Lecture 17 – Dynamic Programming

Reading: KT Sections 6.1 and 6.2

Algorithm techniques

Data structures
• Use extra data structures
• Exploit the structure to improve complexity

Greedy algorithms
• Build up a solution incrementally
• Myopically optimizing some local criterion

Divide and conquer
• Break up a problem into independent subproblems
• Solve each subproblem
• Combine solutions to subproblems to form solution to original problem

Dynamic Programming
• Break up a problem into a series of overlapping subproblems
• Build up solutions to larger and larger subproblems

Partial content of these slides have been obtained from the official lecture slides that accompany the textbook. A complete set of slides can be found at:
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/
A bit of history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.

Etymology.
- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.

Weighted Interval Scheduling problem
Weighted Interval Scheduling problem

Let’s try solving it

• Will greedy work?

• How about divide and conquer?

• Is there some structure in the problem that we can exploit?
Let’s define a few notions

Notation. Label jobs by finishing time: $f_1 \leq f_2 \leq \ldots \leq f_n$.

Def. $p(j)$: largest index $i < j$ such that job i is compatible with j.

Ex. $p(8) = 5, p(7) = 3, p(2) = 0$.

More notations

Notation. $OPT(j)$: value of optimal solution to the problem consisting of job requests $1, 2, \ldots, j$.

Goal. $OPT(n)$: value of optimal solution to the original problem.

Case 1. $OPT(j)$ selects job j.
- Collect profit v_j.
- Can’t use incompatible jobs $(p(j) + 1, p(j) + 2, \ldots, j - 1)$.
- Must include optimal solution to problem consisting of remaining compatible jobs $1, 2, \ldots, p(j)$.

Case 2. $OPT(j)$ does not select job j.
- Must include optimal solution to problem consisting of remaining jobs $1, 2, \ldots, j - 1$.

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \max \{ v_j + OPT(p(j)), OPT(j - 1) \} & \text{otherwise} \end{cases}$$
A brute force solution

Brute-Force \((n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n)\)

Sort jobs by finish time so that \(f_1 \leq f_2 \leq \ldots \leq f_n\).
Compute \(p[1], p[2], \ldots, p[n]\).
RETURN \(\text{Compute-Opt}(n)\).

Compute-Opt \((j)\)

IF \(j = 0\)
RETURN 0,
ELSE
RETURN \(\max \{ v_j + \text{Compute-Opt}(p[j]), \text{Compute-Opt}(j-1) \}\).

Memoization

Top-down dynamic programming (memoization). Cache result of each subproblem; lookup as needed.

Top-Down \((n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n)\)

Sort jobs by finish time so that \(f_1 \leq f_2 \leq \ldots \leq f_n\).
Compute \(p[1], p[2], \ldots, p[n]\).
\(M[0] \leftarrow 0.\) — global array \(M\)
RETURN \(\text{M-Compute-Opt}(n)\).

M-Compute-Opt \((j)\)

IF \(M[j] = \text{uninitialized}\)
\(M[j] \leftarrow \max \{ v_j + \text{M-Compute-Opt}(p[j]), \text{M-Compute-Opt}(j-1) \}\.),
RETURN \(M[j]\).
Bottom-up dynamic programming

\textbf{Bottom-up dynamic programming.} Unwind recursion.

\begin{algorithm}
\textbf{BOTTOM-UP} \((u, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n)\)
\begin{align*}
\text{Sort jobs by finish time so that } & f_1 \leq f_2 \leq \ldots \leq f_n. \\
\text{Compute } & p[1], p[2], \ldots, p[n]. \\
M[0] & \leftarrow 0. \\
\text{FOR } & j = 1 \text{ TO } n \\
M[j] & \leftarrow \max\{ v_j + M[p[j]], M[j-1] \}.
\end{align*}
\end{algorithm}

\textbf{Running time.} The bottom-up version takes \(O(n \log n)\) time.