Finish the Knapsack example from before

Graphs with negative weights

- Given a graph \(G = (V, E) \) with a weight function \(w: V \times V \rightarrow R \)
 - In other words, it could have negative weights
- Can we use Dijkstra’s algorithm to find shortest paths in a graph with negative edge weights?

Graphs with negative weights

- Why?
 - Is it the design of the algorithm?
 - Or that there are no shortest paths in graphs with negative edge weights?
- What is the shortest path distance between \(s \) and every other node in the graph?
Another example

• What about the shortest path between s and t here?

Negative cycles

Def. A negative cycle is a directed cycle such that the sum of its edge weights is negative.

Shortest paths and negative cycles

If some path from v to t contains a negative cycle, then there does not exist a cheapest path from v to t.

If G has no negative cycles, then there exists a cheapest path from v to t that is simple (and has ≤ n – 1 edges).

How can we solve the Shortest Path problem as a dynamic program

Let's think together
Shortest-Paths (V, E, c, 0)

Foreach node v ∈ V

\[M[0, v] \leftarrow \infty. \]

\[M[0, v] \leftarrow 0. \]

For i = 1 to n - 1

Foreach node v ∈ V

\[M[i, v] \leftarrow M[i-1, v]. \]

Foreach edge (v, w) ∈ E

\[M[i, v] \leftarrow \min \{ M[i, v], M[i-1, w] + c_{vw} \}. \]

Bellman–Ford (V, E, c, r)

Foreach node v ∈ V

\[d(v) \leftarrow \infty. \]

\[\text{successor}(v) \leftarrow \text{null}. \]

\[d(r) \leftarrow 0. \]

For i = 1 to n - 1

Foreach node w ∈ V

If \(d(w) \) was updated in previous iteration

Foreach edge (v, w) ∈ E

If \(d(v) + c_{vw} \) \(< d(w) \)

\[d(w) \leftarrow d(v) + c_{vw}. \]

\[\text{successor}(w) \leftarrow v. \]

If no \(d(w) \) value changed in iteration i, STOP.