Lecture 19 – Network Flow

Reading: KT Chapter 7

Part of this content has been obtained from the official lecture slides that accompany the textbook. A complete set of slides can be found at: http://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Network flow

• Examples:
 • Water pipe network
 • Computer network
 • Road network

Maximum Network flow

Maximum network flow problem

• Input:
 • Directed graph \(G = (V, E) \)
 • Each edge has a non-negative capacity \(c(e) \)
 • Source and target vertices on the graph

• Output:
 • Maximum flow that can be pushed from \(s \) to \(t \)

• Constraints:
 • Capacity constraint
 • Flow conservation
Minimum cut problem

• Input:
 • Directed graph $G = (V, E)$
 • Each edge has a non-negative capacity $c(e)$
 • Source and target vertices on the graph

• Output:
 • Minimum cut of G whose capacity is minimum over all cuts of G
 • The net flow across a cut is the same as the maximum flow
Ford-Fulkerson algorithm

- It's simple, and practical *
- Idea behind it:
 - Find the different paths that the flow can be decomposed into

```
Flow decompositions:
s,a,b,t
s,c,a,b,t
s,c,d,b,t
s,c,d,t
```

Max-flow problem

Def. An \(\omega \)-flow (flow) \(f \) is a function that satisfies:

- For each \(e \in E \):
 \[0 \leq f(e) \leq \omega(e) \]
 [capacity]
- For each \(v \in V \setminus \{ s, t \} \):
 \[\sum_{e \in \delta^+(v)} f(e) = \sum_{e \in \delta^-(v)} f(e) \]
 [flow conservation]

Augmenting path

Def. An augmenting path is a simple \(s \rightarrow t \) path in the residual network \(G_f \).

Def. The bottleneck capacity of an augmenting path \(P \) is the minimum residual capacity of any edge in \(P \).

Key property. Let \(f \) be a flow and let \(P \) be an augmenting path in \(G_f \). Then, after calling \textsc{AUGMENT}, the resulting \(f' \) is a flow and \(\text{val}(f') = \text{val}(f) + \text{bottleneck}(G_f, P) \).

```
\textsc{AUGMENT}(f, c, P)

\begin{algorithm}
  \STATE \textbf{b} \leftarrow \text{bottleneck capacity of path } P.
  \STATE \textbf{FOREACH} edge \( e \in P \):
  \STATE \textbf{IF} \( \omega(e) \geq f(e) \)
  \STATE \hspace{1em} \textbf{f}[e] \leftarrow f[e] + b.
  \STATE \textbf{ELSE}
  \STATE \hspace{1em} \textbf{f}[\omega(e) \rightarrow e] = f[\omega(e)] - b.
  \STATE \textbf{RETURN } f'.
\end{algorithm}
```

Ford-Fulkerson algorithm

```
\textsc{FORD–FULKERSON}(G)

\begin{algorithm}
  \STATE \textbf{FOREACH} edge \( e \in E \) \textbf{: } f[e] \leftarrow 0.
  \STATE G_f \leftarrow \text{residual network of } G \text{ with respect to } f.
  \STATE \textbf{WHILE} \{ \text{there exists an } s \rightarrow t \text{ path } P \text{ in } G_f \} \textbf{: }
  \STATE \hspace{1em} f \leftarrow \textsc{AUGMENT}(f, c, P).
  \STATE \text{Update } G_f.
  \STATE \textbf{RETURN } f.
\end{algorithm}
```

 augmenting path
Residual graph with augmenting path p

Augment flow f along p
Residual graph with augmenting path p

Augment flow f along p

Residual graph with augmenting path p

Final result