Lecture 2 – Asymptotic Notation
Reading: KT Sections 2.1 and 2.2

Algorithm efficiency

- What makes us say that an algorithm is efficient?
 - Real answer: when it’s better than its brute force counter-part

 Brute force. For many nontrivial problems, there is a natural brute-force search algorithm that checks every possible solution.
 - Typically takes 2^n time or worse for inputs of size n.
 - Unacceptable in practice.

Remember the interval scheduling problem from last time?

Polynomial time algorithms

We say that an algorithm is **efficient** if it has a polynomial running time.

Justification. It really works in practice!
- In practice, the poly-time algorithms that people develop have low constants and low exponents.
- Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.

Exceptions. Some poly-time algorithms do have high constants and/or exponents, and/or are useless in practice.

Q. Which would you prefer: $2n^2$ vs. $e^{n/10}$?
Worst case analysis

Worst case. Running time guarantee for any input of size n.
- Generally captures efficiency in practice.
- Draconian view, but hard to find effective alternative.

Exceptions. Some exponential-time algorithms are used widely in practice because the worst-case instances seem to be rare.

Other types of analyses

Worst case. Running time guarantee for any input of size n.
Ex. Heapsort requires at most $2n \log n$ compares to sort n elements.

Probabilistic. Expected running time of a randomized algorithm.
Ex. The expected number of compares to quicksort n elements is $\sim 2n \ln n$.

Amortized. Worst-case running time for any sequence of n operations.
Ex. Starting from an empty stack, any sequence of n push and pop operations takes $O(n)$ primitive computational steps using a resizing array.

Average-case. Expected running time for a random input of size n.
Ex. The expected number of character compares performed by 3-way radix quicksort on n uniformly random strings is $\sim 2n \ln n$.

Also. Smoothed analysis, competitive analysis, ...

The way things grow

By the numbers

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10^9 years, we simply record the algorithm as taking a very long time.

<table>
<thead>
<tr>
<th>n</th>
<th>$n \log n$</th>
<th>n^2</th>
<th>n^3</th>
<th>1.5^n</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 10$</td>
<td>< 1 sec</td>
</tr>
<tr>
<td>$n = 30$</td>
<td>< 1 sec</td>
<td>18 min</td>
</tr>
<tr>
<td>$n = 50$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>11 min</td>
<td>36 years</td>
</tr>
<tr>
<td>$n = 100$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>$12,892$ years</td>
<td>10^9 years</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 1,000$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>18 min</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 10,000$</td>
<td>< 1 sec</td>
<td>2 min</td>
<td>12 days</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 100,000$</td>
<td>< 1 sec</td>
<td>2 sec</td>
<td>32 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 1,000,000$</td>
<td>1 sec</td>
<td>20 sec</td>
<td>$31,730$ years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
</tbody>
</table>
Agenda

2. Algorithm Analysis

- computational tractability
- asymptotic order of growth
- survey of common running times

Big-Oh notation

Upper bounds. \(T(n) \) is \(O(f(n)) \) if there exist constants \(c > 0 \) and \(n_0 \geq 0 \) such that \(T(n) \leq c \cdot f(n) \) for all \(n \geq n_0 \).

- This means that \(T(n) \) grows no faster than \(f(n) \).
- For example, let’s consider \(17n^2 \) and \(n^2 \)

Can you find \(c \) and \(n_0 \)?

Common mistakes

Equals sign. \(O(f(n)) \) is a set of functions, but computer scientists often write \(T(n) = O(f(n)) \) instead of \(T(n) \in O(f(n)) \).

Ex. Consider \(f(n) = 5n^3 \) and \(g(n) = 3n^2 \).
- We have \(f(n) = O(n^3) = g(n) \).
- Thus, \(f(n) = g(n) \).

Domain. The domain of \(f(n) \) is typically the natural numbers \(\{0, 1, 2, \ldots \} \).
- Sometimes we restrict to a subset of the natural numbers.
- Other times we extend to the reals.

Non-negative functions. When using big-Oh notation, we assume that the functions involved are (asymptotically) non-negative.

Big-Omega notation

Lower bounds. \(T(n) \) is \(\Omega(f(n)) \) if there exist constants \(c > 0 \) and \(n_0 \geq 0 \) such that \(T(n) \geq c \cdot f(n) \) for all \(n \geq n_0 \).

Typical usage. Any compare-based sorting algorithm requires \(\Omega(n \log n) \) compares in the worst case.

Meaningless statement. Any compare-based sorting algorithm requires at least \(O(n \log n) \) compares in the worst case.
Big-Theta notation

Tight bounds. $T(n)$ is $\Theta(f(n))$ if there exist constants $c_1 > 0$, $c_2 > 0$, and $n_0 \geq 0$ such that $c_1 \cdot f(n) \leq T(n) \leq c_2 \cdot f(n)$ for all $n \geq n_0$.

Ex. $T(n) = 32n^2 + 17n + 1$.
- $T(n)$ is $\Theta(n^2)$.
- $T(n)$ is neither $\Theta(n)$ nor $\Theta(n^3)$.

Typical usage. Mergesort makes $\Theta(n \log n)$ compares to sort n elements.

Some properties to know...

Polynomials. Let $T(n) = a_0 + a_1 n + \ldots + a_d n^d$ with $a_d > 0$. Then, $T(n)$ is $\Theta(n^d)$.

Pf. $\lim_{n \to \infty} \frac{a_0 + a_1 n + \ldots + a_d n^d}{n^d} = a_d > 0$.

Logarithms. $\Theta(\log_2 n)$ is $\Theta(\log_b n)$ for any constants $a, b > 0$.

Logarithms and polynomials. For every $d > 0$, $\log n$ is $O(n^d)$.

Exponentials and polynomials. For every $e > 1$ and every $d > 0$, e^d is $O(n^e)$.

Pf. $\lim_{n \to \infty} \frac{n^e}{e^d} = 0$.

Agenda

2. Algorithm Analysis
- computational tractability
- asymptotic order of growth
- survey of common running times

Can you think of a?

- Linear time algorithm
- Sublinear time algorithm
- Linearithmic time algorithm
- Quadratic time algorithm
- Cubic time algorithm