Lecture 4 – Asymptotic Notation

Reading: KT Sections 2.1 and 2.2

Partial content of these slides have been obtained from the official lecture slides that accompany the textbook. A complete set of slides can be found at: http://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Agenda

2. Algorithm Analysis
 - computational tractability
 - asymptotic order of growth
 - survey of common running times
Algorithm efficiency

- What makes us say that an algorithm is efficient?
 - Real answer: when it’s better than its brute force counter-part

Brute force. For many nontrivial problems, there is a natural brute-force search algorithm that checks every possible solution.
- Typically takes 2^n time or worse for inputs of size n.
- Unacceptable in practice.

Remember the matching problem from last time?

Polynomial time algorithms

We say that an algorithm is efficient if it has a polynomial running time.

Justification. It really works in practice!
- In practice, the poly-time algorithms that people develop have low constants and low exponents.
- Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.

Exceptions. Some poly-time algorithms do have high constants and/or exponents, and/or are useless in practice.

Q. Which would you prefer $20n^{10}$ vs. $n^4 + 0.02lnn$?
Worst case analysis

Worst case. Running time guarantee for any input of size n.
- Generally captures efficiency in practice.
- Draconian view, but hard to find effective alternative.

Exceptions. Some exponential-time algorithms are used widely in practice because the worst-case instances seem to be rare.

Other types of analyses

Worst case. Running time guarantee for any input of size n.
* Ex. Heapsort requires at most $2 \, n \, \log_2 n$ compares to sort n elements.

Probabilistic. Expected running time of a randomized algorithm.
* Ex. The expected number of compares to quicksort n elements is $\sim 2n \ln n$.

Amortized. Worst-case running time for any sequence of n operations.
* Ex. Starting from an empty stack, any sequence of n push and pop operations takes $O(n)$ primitive computational steps using a resizing array.

Average-case. Expected running time for a random input of size n.
* Ex. The expected number of character compares performed by 3-way radix quicksort on n uniformly random strings is $\sim 2n \ln n$.

Also. Smoothed analysis, competitive analysis, ...
The way things grow

By the numbers

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{20} years, we simply record the algorithm as taking a very long time.

<table>
<thead>
<tr>
<th>n</th>
<th>$n \log n$</th>
<th>n^2</th>
<th>n^3</th>
<th>1.5^n</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>< 1 sec</td>
<td>4 sec</td>
</tr>
<tr>
<td>50</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>18 min</td>
<td>10^{25} years</td>
</tr>
<tr>
<td>100</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>11 min</td>
<td>36 years</td>
</tr>
<tr>
<td>1,000</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>18 min</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>10,000</td>
<td>< 1 sec</td>
<td>2 min</td>
<td>12 days</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>100,000</td>
<td>< 1 sec</td>
<td>2 sec</td>
<td>3 hours</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>1,000,000</td>
<td>1 sec</td>
<td>20 sec</td>
<td>12 days</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
</tbody>
</table>
Agenda

2. Algorithm Analysis

- computational tractability
- asymptotic order of growth
- survey of common running times

Big-Oh notation

Upper bounds. $T(n)$ is $O(f(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that $T(n) \leq c \cdot f(n)$ for all $n \geq n_0$.

- This means that $T(n)$ grows no faster than $f(n)$.
- For example, let's consider $17n^2$ and n^2

![Graph showing $17n^2$ and n^2 growth comparison.]

Can you find c and n_0?
Common mistakes

Equals sign. $O(f(n))$ is a set of functions, but computer scientists often write $T(n) = O(f(n))$ instead of $T(n) \in O(f(n))$.

Ex. Consider $f(n) = 5n^3$ and $g(n) = 3n^2$.
- We have $f(n) = O(n^3) = g(n)$.
- Thus, $f(n) = g(n) \times$

Domain. The domain of $f(n)$ is typically the natural numbers $\{0, 1, 2, \ldots\}$.
- Sometimes we restrict to a subset of the natural numbers.
- Other times we extend to the reals.

Non-negative functions. When using big-Oh notation, we assume that the functions involved are (asymptotically) non-negative.

Big-Omega notation

Lower bounds. $T(n)$ is $\Omega(f(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that $T(n) \geq c \cdot f(n)$ for all $n \geq n_0$.

Typical usage. Any compare-based sorting algorithm requires $\Omega(n \log n)$ compares in the worst case.

Meaningless statement. Any compare-based sorting algorithm requires at least $O(n \log n)$ compares in the worst case.
Big-Theta notation

Tight bounds. \(T(n) \) is \(\Theta(f(n)) \) if there exist constants \(c_1 > 0, c_2 > 0, \) and \(n_0 \geq 0 \) such that \(c_1 \cdot f(n) \leq T(n) \leq c_2 \cdot f(n) \) for all \(n \geq n_0 \).

Ex. \(T(n) = 32n^2 + 17n + 1 \).
- \(T(n) \) is \(\Theta(n^2) \). \(\leftarrow \) choose \(c_1 = 32, c_2 = 50, n_0 = 1 \)
- \(T(n) \) is neither \(\Theta(n) \) nor \(\Theta(n^3) \).

Typical usage. Mergesort makes \(\Theta(n \log n) \) compares to sort \(n \) elements.

Some properties to know...

Polynomials. Let \(T(n) = a_0 + a_1 n + \ldots + a_d n^d \) with \(a_d > 0 \). Then, \(T(n) \) is \(\Theta(n^d) \).

\[\lim_{n \to \infty} \frac{a_0 + a_1 n + \ldots + a_d n^d}{n^d} = a_d > 0 \]

Logarithms. \(\Theta(\log_a n) \) is \(\Theta(\log_b n) \) for any constants \(a, b > 0 \). \(\leftarrow \) no need to specify base (assuming it is a constant)

Logarithms and polynomials. For every \(d > 0 \), \(\log n \) is \(O(n^d) \).

Exponentials and polynomials. For every \(r > 1 \) and every \(d > 0 \), \(n^d \) is \(O(r^n) \).

\[\lim_{n \to \infty} \frac{n^d}{r^n} = 0 \]
Can you think of a?

- Linear time algorithm
- Sublinear time algorithm
- Linearithmic time algorithm
- Quadratic time algorithm
- Cubic time algorithm