Lecture 4 – The Stable Matching Problem
Reading: KT Sections 1.2 and 2.3

Partial content of these slides have been obtained from the official lecture slides that accompany the textbook. A complete set of slides can be found at: http://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Matching Residents to Hospitals

- **Goal.** Given a set of preferences among hospitals and medical school students, design a self-reinforcing admissions process.

- **Unstable pair:** applicant \(x \) and hospital \(y \) are unstable if:
 - \(x \) prefers \(y \) to its assigned hospital.
 - \(y \) prefers \(x \) to one of its admitted students.

- **Stable assignment.** Assignment with no unstable pairs.
 - Natural and desirable condition.
 - Individual self-interest will prevent any applicant/hospital deal from being made.

Stable Matching Problem

- **Input:**
 - Given \(n \) residents and \(n \) hospitals, with their rating of each other.
 - Each resident lists hospitals in order of preference from best to worst.
 - Each hospital lists residents in order of preference from best to worst.

- **Goal:**
 - Find a "suitable" matching.

<table>
<thead>
<tr>
<th>Residents' Preference Profile</th>
<th>Hospitals' Preference Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>favorite</td>
<td>least favorite</td>
</tr>
<tr>
<td>Xavier</td>
<td>Amy</td>
</tr>
<tr>
<td>Yancey</td>
<td>Bertha</td>
</tr>
<tr>
<td>Zeus</td>
<td>Amy</td>
</tr>
</tbody>
</table>

Stable Matching Problem

- **Perfect matching:** everyone is matched monogamously.
 - Each resident gets exactly one hospital.
 - Each hospital gets exactly one resident.

- **Stability:** no incentive for some pair of participants to undermine assignment by joint action.
 - In matching \(M \), an unmatched pair \(m-w \) is unstable if ...
 - Unstable pair \(r-h \) could each improve by breaking contracts.

- **Stable matching:** perfect matching with no unstable pairs.

- **Stable matching problem.** Given the preference lists of \(n \) residents and \(n \) hospitals, find a stable matching if one exists.
Stable Matching Problem

- Q. Is assignment X-C, Y-B, Z-A stable?

- An unstable pair (r,h) could each improve by joint action.

Stable Matching Problem

- Q. Is assignment X-C, Y-B, Z-A stable?

- An unstable pair (r,h) could each improve by joint action.

Stable Roommate Problem

- Q. Do stable matchings always exist?

- A. Not obvious a priori.

- Stable roommate problem.
 - 2n people; each person ranks others from 1 to 2n-1.
 - Assign roommate pairs so that no unstable pairs.

- Observation. Stable matchings do not always exist for stable roommate problem.
Propose-And-Reject Algorithm

- The (Gale-Shapley 1962) deferred acceptance algorithm is an intuitive method that guarantees to find a stable matching.

Initially all \(m \in M \) and \(w \in W \) are free
While there is a man \(m \) who is free and hasn’t proposed to every woman
Choose such a man \(m \)
Let \(w \) be the highest-ranked woman in \(m \)'s preference list
to whom he has not yet proposed
If \(w \) is free then
\((m, w) \) become engaged
Else \(w \) is currently engaged to \(m' \)
If \(w \) prefers \(m \) to \(m' \)
\(m \) remains free
Else \(w \) prefers \(m \) to \(m' \)
\((m, w) \) become engaged
\(m' \) becomes free
Endif
Endif
Endwhile
Return the set \(S \) of engaged pairs

Proof of Correctness: Termination

- Observation 1. Men propose to women in decreasing order of preference.
- Observation 2. Once a woman is matched, she never becomes unmatched; she only "trades up."
- Claim. Algorithm terminates after at most \(n^2 \) iterations of while loop.
- Pf. Each time through the while loop a man proposes to a new woman. There are only \(n^2 \) possible proposals.

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{Man} & A & B & C & D & E \\
\hline
\text{Woman} & A & B & C & D & E \\
\hline
\end{array}
\]

\(n-1 \times n \) proposals required

Proof of Correctness: Perfection

- Claim. All men and women get matched.
- Pf. (by contradiction)
 - Suppose, for sake of contradiction, that Zeus is not matched upon termination of algorithm.
 - Then some woman, say Amy, is not matched upon termination.
 - By Observation 2, Amy was never proposed to.
 - But, Zeus proposes to everyone, since he ends up unmatched.

Proof of Correctness: Stability

• Claim. No unstable pairs in a matching S^*.
• Pf. (by contradiction)
 • Suppose A-Z is an unstable pair: each prefers each other to partner in Gale-Shapley matching S^*.
 • Case 1: Z never proposed to A.
 $$\Rightarrow$$ Z prefers his GS partner to A.
 $$\Rightarrow$$ A-Z is stable.
 • Case 2: Z proposed to A.
 $$\Rightarrow$$ A rejected Z (right away or later)
 $$\Rightarrow$$ A prefers her GS partner to Z.
 $$\Rightarrow$$ A-Z is stable.

 • In either case A-Z is stable, a contradiction. •

Summary

• Stable matching problem.
 • Given n men and n women, and their preferences, find a stable matching if one exists.

 • Gale-Shapley algorithm. Guarantees to find a stable matching for any problem instance.

 • Q. How to implement GS algorithm efficiently?

 • Q. If there are multiple stable matchings, which one does GS find?