Lecture 6 – Graphs

Reading: KT Sections 3.1 and 3.2

Partial content of these slides have been obtained from the official lecture slides that accompany the textbook. A complete set of slides can be found at: http://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Let’s start with some basics

Graph representation

Undirected Graphs

- Undirected graph. \(G = (V, E) \)
 - \(V \) = nodes.
 - \(E \) = edges between pairs of nodes.
 - Captures pairwise relationship between objects.
 - Graph size parameters: \(n = |V|, m = |E| \).

\[
V = \{1, 2, 3, 4, 5, 6, 7, 8\}
\]
\[
E = \{1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6\}
\]
\(n = 8 \)
\(m = 11 \)

Some Graph Applications

<table>
<thead>
<tr>
<th>Graph</th>
<th>Nodes</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersections</td>
<td>highways</td>
</tr>
<tr>
<td>communication</td>
<td>computers</td>
<td>fiber optic cables</td>
</tr>
<tr>
<td>World Wide Web</td>
<td>web pages</td>
<td>hyperlinks</td>
</tr>
<tr>
<td>social</td>
<td>people</td>
<td>relationships</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey</td>
</tr>
<tr>
<td>software systems</td>
<td>functions</td>
<td>function calls</td>
</tr>
<tr>
<td>scheduling</td>
<td>tasks</td>
<td>precedence constraints</td>
</tr>
<tr>
<td>circuits</td>
<td>gates</td>
<td>wires</td>
</tr>
</tbody>
</table>
World Wide Web

- Web graph.
 - Node: web page.
 - Edge: hyperlink from one page to another.

Ecological Food Web

- Food web graph.
 - Node: species.
 - Edge: from prey to predator.

9-11 Terrorist Network

- Social network graph.
 - Node: people.
 - Edge: relationship between two people.

Paths and Connectivity

- Def. A path in an undirected graph $G = (V, E)$ is a sequence P of nodes v_1, v_2, \ldots, v_k with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E.

- Def. A path is simple if all nodes are distinct.

- Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

Cycles

- Def. A cycle is a path \(v_1, v_2, \ldots, v_{k-1}, v_k \) in which \(v_1 = v_k \), \(k > 2 \), and the first \(k-1 \) nodes are all distinct.

Trees

- Def. An undirected graph is a tree if it is connected and does not contain a cycle.

- Theorem. Let \(G \) be an undirected graph on \(n \) nodes. Any two of the following statements imply the third.
 - \(G \) is connected.
 - \(G \) does not contain a cycle.
 - \(G \) has \(n-1 \) edges.

Rooted Trees

- Rooted tree. Given a tree \(T \), choose a root node \(r \) and orient each edge away from \(r \).

- Importance. Models hierarchical structure.

Exercise time!
Graph Representation: Adjacency Matrix

- Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.
- Two representations of each edge.
- Space proportional to _______.
- Checking if (u, v) is an edge takes $\Theta(?)$ time.
- Identifying all edges takes $\Theta(?)$ time.

```
1  2  3  4  5  6  7  8
1 1 1 0 0 0 0 0 0
2 1 0 1 1 0 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 1 1 0 0 0
5 0 1 1 0 1 0 0 0
6 0 0 0 1 0 0 0 0
7 0 0 1 0 0 0 1 0
8 0 0 1 0 0 0 1 0
```

Graph Representation: Adjacency List

- Adjacency list. Node indexed array of lists.
- Two representations of each edge.
- Space proportional to _______.
- Checking if (u, v) is an edge takes $O(?)$ time.
- Identifying all edges takes $\Theta(?)$ time.

Connectivity

- s-t connectivity problem. Given two node s and t, is there a path between s and t?
- s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

- Applications.
 - Friendster.
 - Maze traversal.
 - Kevin Bacon number.
 - Fewest number of hops in a communication network.
Breadth First Search

- BFS intuition. Explore outward from \(s \) in all possible directions, adding nodes one "layer" at a time.

- BFS algorithm.
 - \(L_0 = \{ s \} \).
 - \(L_1 = \) all neighbors of \(L_0 \).
 - \(L_2 = \) all nodes that do not belong to \(L_0 \) or \(L_1 \), and that have an edge to a node in \(L_1 \).
 - \(L_{i+1} = \) all nodes that do not belong to an earlier layer, and that have an edge to a node in \(L_i \).

For each \(i \), \(L_i \) consists of all nodes at distance exactly \(i \) from \(s \). There is a path from \(s \) to \(t \) iff \(t \) appears in some layer.

Breadth First Search - Analysis

Let \(T \) be a BFS tree of \(G = (V, E) \), and let \((x, y)\) be an edge of \(G \). Then the level of \(x \) and \(y \) differ by at most 1.

Theorem. The above implementation of BFS runs in \(O(m + n) \) time if the graph is given by its adjacency representation.