Lecture 7 – Graphs
Reading: KT Sections 3.1 and 3.2

Let’s start with some basics

Graph representation
Undirected Graphs

- Undirected graph. $G = (V, E)$
- $V =$ nodes.
- $E =$ edges between pairs of nodes.
- Captures pairwise relationship between objects.
- Graph size parameters: $n = |V|, m = |E|.$

$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
$E = \{1-2, 1-3, 2-3, 2-4, 2-5, 3-7, 3-8, 4-5, 5-6\}$
$n = 8$
$m = 11$

Some Graph Applications

<table>
<thead>
<tr>
<th>Graph</th>
<th>Nodes</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersections</td>
<td>highways</td>
</tr>
<tr>
<td>communication</td>
<td>computers</td>
<td>fiber optic cables</td>
</tr>
<tr>
<td>World Wide Web</td>
<td>web pages</td>
<td>hyperlinks</td>
</tr>
<tr>
<td>social</td>
<td>people</td>
<td>relationships</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey</td>
</tr>
<tr>
<td>software systems</td>
<td>functions</td>
<td>function calls</td>
</tr>
<tr>
<td>scheduling</td>
<td>tasks</td>
<td>precedence constraints</td>
</tr>
<tr>
<td>circuits</td>
<td>gates</td>
<td>wires</td>
</tr>
</tbody>
</table>
World Wide Web

- Web graph.
 - Node: web page.
 - Edge: hyperlink from one page to another.

9-11 Terrorist Network

- Social network graph.
 - Node: people.
 - Edge: relationship between two people.

Ecological Food Web

- Food web graph.
 - Node = species.
 - Edge = from prey to predator.

Paths and Connectivity

- Def. A path in an undirected graph $G = (V, E)$ is a sequence P of nodes $v_1, v_2, ..., v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E.

- Def. A path is simple if all nodes are distinct.

- Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.
Cycles

- **Def.** A **cycle** is a path $v_1, v_2, ..., v_{k-1}, v_k$ in which $v_1 = v_k$, $k > 2$, and the first $k-1$ nodes are all distinct.

cycle $C = 1-2-4-5-3-1

Trees

- **Def.** An undirected graph is a **tree** if it is connected and does not contain a cycle.

- **Theorem.** Let G be an undirected graph on n nodes. Any two of the following statements imply the third.
 - G is connected.
 - G does not contain a cycle.
 - G has $n-1$ edges.
Rooted Trees

• Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.

• Importance. Models hierarchical structure.

Exercise time!

Graph representation
Graph Representation: Adjacency Matrix

- Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.
 - Two representations of each edge.
 - Space proportional to __________.
 - Checking if (u, v) is an edge takes $\Theta(?)$ time.
 - Identifying all edges takes $\Theta(?)$ time.

```
1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 0 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 1 0 0 0 0
5 0 1 1 0 1 0 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0
```

Graph Representation: Adjacency List

- Adjacency list. Node indexed array of lists.
 - Two representations of each edge.
 - Space proportional to __________.
 - Checking if (u, v) is an edge takes $O(?)$ time.
 - Identifying all edges takes $\Theta(?)$ time.

```
1 2 3 4 5 6 7 8
1 1 2 5 4
2 1 2 3
3 2 3 5 8
4 2 4
5 5 4
6 6
7 7
8 8
```