Lecture 8 – Directed Graphs

Reading: KT Section 3.4 and 3.6

Partial content of these slides have been obtained from the official lecture slides that accompany the textbook. A complete set of slides can be found at: http://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Directed Graphs

What's different about them?
Direction is important

Connectivity in directed graphs

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two nodes s and t, what is the length of a shortest path from s to t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly.
Assuming you began at node a, give the order of a BFS traversal of the graph is,

Undirected:

Directed:
Directed Acyclic Graphs

Def. A DAG is a directed graph that contains no directed cycles.

Def. A topological order of a directed graph $G = (V, E)$ is an ordering of its nodes as v_1, v_2, \ldots, v_n so that for every edge (v_i, v_j) we have $i < j$.

Dependency Graph on a DAG

- Usually reflect dependencies or requirements
 - i.e., Assembly lines, Supply lines, Organizational charts, ...
 - BTW: You cannot take 231 after 230 unless...

- Understanding dependencies requires “topological sorting”
Topological Sorting Algorithm

- Select a vertex v that has no predecessor
- Remove v from the graph (along with all associated arcs),
- Add v to the end of a list of vertices L
- Repeat previous steps
- When the graph is empty, L's vertices will be in topological order

Why does this work?

If G is DAG, then G has a topological ordering.

If G is a DAG, then G has a node with no predecessors.