Lecture 8 – Connectivity and Traversals
Reading: KT Section 3.2

Reminders

• Assignment 3 due this Thursday

• Proof problem,
 • In class deadline
 • Bring the solution printed to class
 • You will get it back on Monday
Connectivity

- **s-t connectivity problem.** Given two node s and t, is there a path between s and t?

- **s-t shortest path problem.** Given two node s and t, what is the length of the shortest path between s and t?

- **Applications.**
 - Friendster.
 - Maze traversal.
 - Kevin Bacon number.
 - Fewest number of hops in a communication network.
Breadth First Search

• BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

• BFS algorithm.
 • $L_0 = \{ s \}$.
 • L_1 = all neighbors of L_0.
 • L_2 = all nodes that do not belong to L_0 or L_1, and that have an edge to a node in L_1.
 • L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i.

For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.

BFS in action

Graph

Result of BFS(s)
BFS in action

Q: \textcolor{red}{w} \textcolor{red}{r}

BFS in action

Q: \textcolor{red}{r} \textcolor{red}{t} \textcolor{red}{x}
BFS in action

Q: t \ x \ v

BFS in action

Q: x \ v \ u
BFS in action

Q: \textbf{v u y}

BFS in action

Q: \textbf{u y}

\begin{itemize}
\item BFS in action
\item Q: \textbf{v u y}
\item BFS in action
\item Q: \textbf{u y}
\end{itemize}
BFS in action

Q: v

BFS in action

Q:
Breadth First Search - Analysis

Let T be a BFS tree of $G = (V, E)$, and let (x, y) be an edge of G. Then the level of x and y differ by at most 1.

BFS algorithm using lists

- In this algorithm it seems that we are using the list to implement which data structure?

- What's the worst case running time analysis of this algorithm?

```plaintext
BFS(s):
Set Discovered[s] = true and Discovered[v] = false for all v.
Initialize L[0] to consist of the single element s.
Set the layer counter $i = 0$.
Set the current BFS tree $T = \varnothing$.

While $L[i]$ is not empty:
Initialize an empty list $L[i + 1]$.
For each node $u \in L[i]$:
Consider each edge $(u, v)$ incident to $u$.
If Discovered[v] = false then:
Set Discovered[v] = true.
Add edge $(u, v)$ to the tree $T$.
Add $v$ to the list $L[i + 1]$.
Endif.
Endfor.
Increment the layer counter $i$ by one.
Endwhile.
```
Depth First Search (Traversal)

Depth First Search

• DFS intuition. Explore the graph as if you are wandering in a maze, going deeper and deeper with each exploration step.

In the DFS tree generated, for any edge \((x,y)\) in the graph but not in the tree, \(x\) or \(y\) is an ancestor of the other.
Depth First Traversal

Graph

Result of DFS(s)

Depth-First Search in Action
Depth-First Search in Action

Depth-First Search in Action
DFS algorithm using Stacks

• The complexity of this algorithm is $O(m+n)$ as well.

DFS(s):
Initialize S to be a stack with one element s
While S is not empty
 Take a node u from S
 If $\text{Explored}[u] = \text{false}$ then
 Set $\text{Explored}[u] = \text{true}$
 For each edge (u, v) incident to u
 Add v to the stack S
 Endfor
Endif
Endwhile