Let’s do some complexity analysis.

The Breadth First Search algorithm

Analyze the worst case running time complexity of this algorithm, by analyzing the cost of each line and the number of times it would repeat.

1: Set Discovered[s] = true and Discovered[v] = false for all other v
2: Initialize L[0] to consist of the single element s
3: Set the layer counter i = 0
4: Set the current BFS tree T = NIL
5: While L[i] is not empty
6: Initialize an empty list L[i + 1]
7: For each node u in L[i]
8: Consider each edge (u, v) incident to u
9: If Discovered[v] = false then
10: Set Discovered[v] = true
11: Add edge (u, v) to the tree T
12: Add v to the list L[i + 1]
13: Endif
14: Endfor
15: Increment the layer counter i by one
16: Endwhile

Now, let’s analyze it again together.

The Depth First Search algorithm

Can you follow the same method we just did in class to analyze the worst case running time complexity of the DFS algorithm?

1: Initialize S to be a stack with one element s
2: While S is not empty
3: Take a node u from S
4: If Explored[u] = false then
5: Set Explored[u] = true
6: For each edge (u, v) incident to u
7: Add v to the stack S
8: Endfor
9: Endif
10: Endwhile
Some proofs

Breadth First Trees

Theorem. Let \(T \) be a breadth-first search tree, let \(x \) and \(y \) be nodes in \(T \) belonging to layers \(L_i \) and \(L_j \) respectively, and let \((x, y)\) be an edge of \(G \). Then \(i \) and \(j \) differ by at most 1.

Proof. Let \(T \) be a breadth-first search tree, let \(x \) and \(y \) be nodes in \(T \) belonging to layers \(L_i \) and \(L_j \) respectively, and let \((x, y)\) be an edge of \(G \). Assume that \(i \) and \(j \) differ by more than 1.

Without loss of generality, assume that \(j - i > 1 \), with \(x \) being discovered first. As the neighbors of \(x \) are being explored, \(y \) will encountered and one of two things will happen:
1- \(y \) will be added to layer \(L_{i+1} \). Thus \(j = i + 1 \), which is a contradiction.
2- \(y \) will not be added to the next layer because it is already discovered, which is a contradiction as well. Or if you want to add more details, this means that \(y \) is in a layer \(L_j \) such that \(j \leq i \), which is a contradiction.

Depth First Trees

Theorem. Let \(T \) be a depth-first search tree, let \(x \) and \(y \) be nodes in \(T \), and let \((x, y)\) be an edge of \(G \) that is not an edge of \(T \). Then one of \(x \) or \(y \) is an ancestor of the other.

Proof. Suppose that \((x, y)\) is an edge of \(G \) that is not an edge of \(T \), and suppose without loss of generality that \(x \) is reached first by the DFS algorithm. When the vertex \(y \) is being examined as a neighbor of \(x \), the only reason that the edge \((x, y)\) is not added to \(T \) is that \(y \) is marked “Explored.” Since \(x \) was discovered first, then \(y \) is discovered between the invocation and end of the recursive call DFS(x), which means that that \(y \) is a descendant of \(x \).