This assignment should be completed individually. You are allowed to discuss the problems together, but not discuss the answers. You must write the solutions on your own, and list the collaborators you worked with.

Submission instructions. This assignment is due by 11:59pm on Sunday Oct 22, as a pdf file. Submit it to the PSet 5 folder in the CS231-assignments directory. Then, print it, and bring it to class the following Monday.

Problem 1. [20 points]
KT Chapter 4 - Problem 2. For the following statement, decide whether it is true or false. If it is true, give a short explanation. If it is false, give a counterexample.
Suppose we are given an instance of the Shortest s-t Path Problem on a directed graph G. We assume that all edge costs are positive and distinct. Let P be a minimum-cost s-t path for this instance. Now suppose we replace each edge cost c_e by its square, c_{e}^{2}, thereby creating a new instance of the problem with the same graph but different costs.

True or false? P must still be a minimum-cost s-t path for this new instance.

Problem 2. [30 points - Peer Review]
KT Chapter 4 - Problem 3. You are consulting for a trucking company that does a large amount of business shipping packages between New York and Boston. The volume is high enough that they have to send a number of trucks each day between the two locations. Trucks have a fixed limit W on the maximum amount of weight they are allowed to carry. Boxes arrive at the New York station one by one, and each package i has a weight w_{i}. The trucking station is quite small, so at most one truck can be at the station at any time. Company policy requires that boxes are shipped in the order they arrive; otherwise, a customer might get upset upon seeing a box that arrived after his make it to Boston faster. At the moment, the company is using a simple greedy algorithm for packing: they pack boxes in the order they arrive, and whenever the next box does not fit, they send the truck on its way.

But they wonder if they might be using too many trucks, and they want your opinion on whether the situation can be improved. Here is how they are thinking. Maybe one could decrease the number of trucks needed by sometimes sending off a truck that was less full, and in this way allow the next few trucks to be better packed.

Prove that, for a given set of boxes with specified weights, the greedy algorithm currently in use actually minimizes the number of trucks that are needed. Your proof should follow the type of analysis we used for the Interval Scheduling Problem: it should establish the optimality of this greedy packing algorithm by identifying a measure under which it stays ahead of all other solutions.
Problem 3. [20 points]
KT Chapter 4 - Problem 5. Lets consider a long, quiet country road with houses scattered very sparsely along it. (We can picture the road as a long line segment, with an eastern endpoint and a western endpoint.) Further, let's suppose that despite the bucolic setting, the residents of all these houses are avid cell phone users. You want to place cell phone base stations at certain points along the road, so that every house is within four miles of one of the base stations.

Give an efficient algorithm that achieves this goal, using as few base stations as possible.

Problem 4. [30 points]
KT Chapter 4 - Problem 6. Your friend is working as a camp counselor, and he is in charge of organizing activities for a set of junior-high-school-age campers. One of his plans is the following mini-triathlon exercise: each contestant must swim 20 laps of a pool, then bike 10 miles, then run 3 miles. The plan is to send the contestants out in a staggered fashion, via the following rule: the contestants must use the pool one at a time. In other words, first one contestant swims the 20 laps, gets out, and starts biking. As soon as this first person is out of the pool, a second contestant begins swimming the 20 laps; as soon as he or she is out and starts biking, a third contestant begins swimming . . . and so on.)

Each contestant has a projected swimming time (the expected time it will take him or her to complete the 20 laps), a projected biking time (the expected time it will take him or her to complete the 10 miles of bicycling), and a projected running time (the time it will take him or her to complete the 3 miles of running). Your friend wants to decide on a schedule for the triathlon: an order in which to sequence the starts of the contestants. Lets say that the completion time of a schedule is the earliest time at which all contestants will be finished with all three legs of the triathlon, assuming they each spend exactly their projected swimming, biking, and running times on the three parts. (Again, note that participants can bike and run simultaneously, but at most one person can be in the pool at any time.) What's the best order for sending people out, if one wants the whole competition to be over as early as possible? More precisely, give an efficient algorithm that produces a schedule whose completion time is as small as possible.