Problem 1. [10 points - No help question]
The correctness of Prim’s algorithm. Explain how Prim’s algorithm can be used to find a minimum spanning tree of a graph. Why does the algorithm successfully find a minimum spanning tree?

Problem 2. [20 points]
One of the basic motivations behind the Minimum Spanning Tree Problem is the goal of designing a spanning network for a set of nodes with minimum total cost. Here we explore another type of objective: designing a spanning network for which the most expensive edge is as cheap as possible.

Specifically, let $G = (V, E)$ be a connected graph with n vertices, m edges, and positive edge costs that you may assume are all distinct. Let $T = (V, E')$ be a spanning tree of G; we define the bottleneck edge of T to be the edge of T with the greatest cost.

A spanning tree T of G is a minimum-bottleneck spanning tree if there is no spanning tree T' of G with a cheaper bottleneck edge.

(a) Is every minimum-bottleneck tree of G a minimum spanning tree of G? Prove or give a counterexample.

(b) Is every minimum spanning tree of G a minimum-bottleneck tree of G? Prove or give a counterexample.

Problem 3. [20 points]
Insertion sort can be expressed as a recursive procedure as follows. In order to sort $A[1..n]$, we recursively sort $A[1..n-1]$ and then insert $A[n]$ into the sorted array $A[1..n-1]$. Write pseudocode for this recursive version of Insertion sort, give a recurrence for the running time of the algorithm, and solve it using recurrence trees.

Problem 4. [25 points]
Let us say that a graph $G = (V, E)$ is a near-tree if it is connected and has at most $n + 8$ edges, where $n = |V|$. Give an algorithm with running time $O(n)$ that takes a near-tree G with costs on its edges, and returns a minimum spanning tree of G. You may assume that all the edge costs are distinct. You have to explain why the running time of your algorithm is $O(n)$.

Problem 5. [25 points]
Consider the Minimum Spanning Tree Problem on an undirected graph $G = (V, E)$, with a cost $c_e \geq 0$ on each edge, where the costs may not all be different. If the costs are not all distinct, there can in general be many distinct minimum-cost solutions.

Suppose we are given a spanning tree $T \subset E$ with the guarantee that for every $e \in T$, e belongs to some minimum-cost spanning tree in G. Can we conclude that T itself must be a minimum-cost spanning tree in G? Give a proof or a counterexample with explanation.