What is Search For?

- Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space
- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics give problem-specific guidance
- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems

Constraint Satisfaction Problems

- Standard search problems:
 - State is a "black box": arbitrary data structure
 - Goal test can be any function over states
 - Successor function can also be anything
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
 - Simple example of a formal representation language
 - Allows useful general-purpose algorithms with more power than standard search algorithms
CSP Examples

Example: Map Coloring
- **Variables:** WA, NT, Q, NSW, V, SA, T
- **Domains:** \(D = \{\text{red, green, blue}\}\)
- **Constraints:** adjacent regions must have different colors
 - Implicit: WA \(\neq\) NT
 - Explicit: \((\text{WA, NT}) \in \{(\text{red, green}), (\text{red, blue}), \ldots\}\)
- **Solutions** are assignments satisfying all constraints, e.g.:
 - \{WA=\text{red}, NT=\text{green}, Q=\text{red}, NSW=\text{green}, V=\text{red}, SA=\text{blue}, T=\text{green}\}

Example: N-Queens

Formulation 1:
- **Variables:** \(X_{ij}\)
- **Domains:** \(\{0, 1\}\)
- **Constraints**
 - \(\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}\)
 - \(\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}\)
 - \(\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}\)
 - \(\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\}\)
 - \(\sum_{i,j} X_{ij} = N\)

Formulation 2:
- **Variables:** \(Q_k\)
- **Domains:** \(\{1, 2, 3, \ldots N\}\)
- **Constraints:**
 - Implicit: \(\forall i, j \text{ non-threatening}(Q_i, Q_j)\)
 - Explicit: \((Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}\)
 - \(\ldots\)
Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Screenshot of Demo N-Queens

Example: Cryptarithmetic

- Variables: \(F T U W R O X_1 X_2 X_3\)
- Domains: \(\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}\)
- Constraints:
 \[\text{alldiff}(F, T, U, W, R, O)\]
 \[O + O = R + 10 \cdot X_1\]
 \[\ldots\]
Example: Sudoku

Variables:
- Each (open) square
- Domains:
 - [1, 2, ..., 9]
- Constraints:
 9-way alldiff for each column
 9-way alldiff for each row
 9-way alldiff for each region
 (or can have a bunch of pairwise inequality constraints)

Varieties of CSPs and Constraints

Varieties of CSPs

- **Discrete Variables**
 - Finite domains
 - Size d means \(O(d^n)\) complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

- **Continuous variables**
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods

Varieties of Constraints

- **Varieties of Constraints**
 - Unary constraints involve a single variable (equivalent to reducing domains), e.g.:
 - \(SA \neq \text{green}\)
 - Binary constraints involve pairs of variables, e.g.:
 - \(SA \neq \text{WA}\)
 - Higher-order constraints involve 3 or more variables: e.g., cryptarithmic column constraints

- **Preferences (soft constraints):**
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore these until we get to Bayes’ nets)
Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Fault diagnosis
- ... lots more!

- Many real-world problems involve real-valued variables...

Solving CSPs

Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}.
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- We’ll start with the straightforward, naïve approach, then improve it

Search Methods

- What would BFS do?
- What would DFS do?
- What problems does naïve search have?

[Demo: coloring -- dfs]
Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
 - Variable assignments are commutative, so fix ordering
 - i.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
 - i.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to check the constraint
 - “Incremental goal test”
- Depth-first search with these two improvements is called backtracking search (not the best name)
- Can solve n-queens for \(n \approx 25 \)
Backtracking Search

function BACKTRACKING-SEARCH() returns solution/failure
 return RECURSIVE-BACKTRACKING([], cp)

function RECURSIVE-BACKTRACKING([assignment], cp) returns solution/failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-Variable([assignment], cp)
 for each value in ORDER-DOMAINS-VALUES(var, assignment, cp) do
 if value is consistent with assignment gives CONSTRAINTS([assignment] then
 add [var = value] to assignment
 result ← RECURSIVE-BACKTRACKING([assignment], cp)
 if result is failure then return failure
 remove [var = value] from assignment
 return failure

- Backtracking = DFS + variable-ordering + fail-on-violation
- What are the choice points?

Video of Demo Coloring – Backtracking

Improving Backtracking

- General-purpose ideas give huge gains in speed
- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?
- Structure: Can we exploit the problem structure?

Filtering
Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

Filtering: Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn’t provide early detection for all failures:
 - NT and SA cannot both be blue!
 - Why didn’t we detect this yet?
 - Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

- An arc \(X \rightarrow Y \) is consistent iff for every \(x \) in the tail there is some \(y \) in the head which could be assigned without violating a constraint

Video of Demo Coloring – Backtracking with Forward Checking

- Forward checking: Enforcing consistency of arcs pointing to each new assignment
Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:

![Arc Consistency Diagram]

- Important: If \(X \) loses a value, neighbors of \(X \) need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What’s the downside of enforcing arc consistency?

Enforcing Arc Consistency in a CSP

- **Function** `AC3(csp)` returns the CSP, possibly with reduced domains
- **Input**: `csp`, a binary CSP with variables \(\{ X_1, X_2, \ldots, X_n \} \)
- **Local variables**: `queue`, a queue of arcs, initially all the arcs in `csp`

```plaintext
while queue is not empty do
  \((X_1, X_2) :=\) Remove-First(queue)
  if Remove-Inconsistent-Value\((X_1, X_2)\) then
    for each \( X_1 \) in Neighborhood\((X_2)\) do
      add \((X_1, X_2)\) to queue
```

- **Function** `Remove-Inconsistent-Value\((X_1, X_2)\)` returns true if succeeds

```plaintext
removed := false
for each \( z \in \text{Domain}(X_1)\) do
  if no value \( y \in \text{Domain}(X_2)\) allows \((z, y)\) to satisfy the constraint \( X_1 \rightarrow X_2 \) then
detach \( z \) from \( \text{Domain}(X_1)\), removed := true
return removed
```

- Runtime: \(O(n^3d^2)\), can be reduced to \(O(n^3d^4)\)
- ... but detecting all possible future problems is NP-hard – why?

Video of Demo Arc Consistency – CSP Applet – n Queens

- [Demo: CSP applet (made available by ainspace.org) -- n-queens]

Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

- Arc consistency still runs inside a backtracking search!

[Demo: coloring – forward checking]
[Demo: coloring – arc consistency]
Video of Demo Coloring – Backtracking with Forward Checking – Complex Graph

 порядок: минимальное оставшееся значение

 порядок: наименьшее ограничивающее значение

 Variable Ordering: Minimum remaining values (MRV):
 • Choose the variable with the fewest legal left values in its domain

 Why min rather than max?
 • Also called “most constrained variable”
 • “Fail-fast” ordering

 Value Ordering: Least Constraining Value
 • Given a choice of variable, choose the least constraining value
 • I.e., the one that rules out the fewest values in the remaining variables
 • Note that it may take some computation to determine this! (E.g., rerunning filtering)

 Why least rather than most?

 Combining these ordering ideas makes 1000 queens feasible