Reinforcement Learning

- **Basic idea:**
 - Receive feedback in the form of rewards
 - Agent’s utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!

Example: Learning to Walk

Initial | A Learning Trial | After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

Initial

[Video: AIBO WALK – initial]

(Kohl and Stone, ICRA 2004)

Example: Learning to Walk

Training

[Video: AIBO WALK – training]

(Kohl and Stone, ICRA 2004)

Example: Learning to Walk

Finished

[Video: AIBO WALK – finished]

(Kohl and Stone, ICRA 2004)

Example: Toddler Robot

[Video: TODDLER – 40s]

(Tedrake, Zhang and Seung, 2005)
Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s,a,s')$
 - A reward function $R(s,a,s')$
- Still looking for a policy $\pi(s)$
- New twist: don’t know T or R
 - I.e. we don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

- Offline Solution
- Online Learning

Model-Based Learning
Model-Based Learning

- **Model-Based Idea:**
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct

- **Step 1: Learn empirical MDP model**
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\hat{T}(s, a, s')$
 - Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

- **Step 2: Solve the learned MDP**
 - For example, use value iteration, as before

Example: Model-Based Learning

Input Policy π

- **Observed Episodes (Training)**
 - **Episode 1**
 - B, east, C, -1
 - C, east, D, -1
 - D, exit, x, +10
 - **Episode 2**
 - B, east, C, -1
 - C, east, D, -1
 - D, exit, x, +10

 - **Episode 3**
 - E, north, C, -1
 - C, east, D, -1
 - D, exit, x, +10
 - **Episode 4**
 - E, north, C, -1
 - C, east, A, -1
 - D, exit, x, +10

 - **Learned Model**
 - $\hat{T}(s, a, s')$
 - $T(B, \text{east}, C) = 1.00$
 - $T(C, \text{east}, D) = 0.75$
 - $T(C, \text{east}, A) = 0.25$
 - $T(D, \text{exit}, x) = \ldots$

Example: Expected Age

Goal: Compute expected age of cs188 students

<table>
<thead>
<tr>
<th>Known P(A)</th>
<th>Unknown P(A): "Model Based"</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E[A] = \sum_a \hat{P}(a) \cdot a = 0.35 \times 20 + \ldots$</td>
<td>$\hat{P}(a) = \frac{\text{num}(a)}{N}$</td>
</tr>
<tr>
<td>$E[A] \approx \sum_a \hat{P}(a) \cdot a$</td>
<td>$E[A] \approx \frac{1}{N} \sum_{a_i}$</td>
</tr>
</tbody>
</table>

Why does this work? Because you eventually learn the right model.

Why does this work? Because samples appear with the right frequencies.

Model-Free Learning

- **Unknown P(A): "Model Based"**
 - $\hat{P}(a) = \frac{\text{num}(a)}{N}$
 - $E[A] \approx \frac{1}{N} \sum_{a_i}$

- **Unknown P(A): "Model Free"**
 - $E[A] \approx \frac{1}{N} \sum_{a_i}$

- **Why does this work?** Because samples appear with the right frequencies.
Passive Reinforcement Learning

- Simplified task: policy evaluation
 - Input: a fixed policy \(\pi(s) \)
 - You don’t know the transitions \(T(s,a,s') \)
 - You don’t know the rewards \(R(s,a,s') \)
 - Goal: learn the state values

- In this case:
 - Learner is “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

- Goal: Compute values for each state under \(\pi \)

- Idea: Average together observed sample values
 - Act according to \(\pi \)
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples

- This is called direct evaluation

Example: Direct Evaluation

<table>
<thead>
<tr>
<th>Input Policy (\pi)</th>
<th>Observed Episodes (Training)</th>
<th>Output Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Episode 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B, east, C, -1</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>C, east, D, -1</td>
<td>+4</td>
</tr>
<tr>
<td></td>
<td>D, exit, x, +10</td>
<td>+10</td>
</tr>
<tr>
<td></td>
<td>Episode 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B, east, C, -1</td>
<td>+8</td>
</tr>
<tr>
<td></td>
<td>C, east, D, -1</td>
<td>+4</td>
</tr>
<tr>
<td></td>
<td>D, exit, x, +10</td>
<td>+10</td>
</tr>
<tr>
<td></td>
<td>Episode 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E, north, C, -1</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>C, east, D, -1</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>D, exit, x, +10</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>Episode 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E, north, C, -1</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>C, east, A, -1</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>A, exit, x, -10</td>
<td>-10</td>
</tr>
</tbody>
</table>

Assume: \(\gamma = 1 \)
Problems with Direct Evaluation

- What’s good about direct evaluation?
 - It’s easy to understand
 - It doesn’t require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions

- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>+8</td>
<td></td>
<td>+4</td>
<td></td>
<td>+10</td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If B and E both go to C under this policy, how can their values be different?

Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V
 \[
 V_0^\pi(s) = 0
 \]
 \[
 V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') \{ R(s, \pi(s), s') + \gamma V_k^\pi(s') \}
 \]
 - This approach fully exploited the connections between the states
 - Unfortunately, we need T and R to do it!

- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:
 \[
 V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') \{ R(s, \pi(s), s') + \gamma V_k^\pi(s') \}
 \]
 - Idea: Take samples of outcomes s’ (by doing the action!) and average
 \[
 \text{sample}_1 = R(s, \pi(s), s'_1) + \gamma V_k^\pi(s'_1)
 \]
 \[
 \text{sample}_2 = R(s, \pi(s), s'_2) + \gamma V_k^\pi(s'_2)
 \]
 \[
 \vdots
 \]
 \[
 \text{sample}_n = R(s, \pi(s), s'_n) + \gamma V_k^\pi(s'_n)
 \]
 \[
 V_{k+1}^\pi(s) \leftarrow \frac{1}{n} \sum_{i=1}^{n} \text{sample}_i
 \]
Temporal Difference Learning

- **Big idea:** learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s’ will contribute updates more often
- **Temporal difference learning of values**
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of V(s):

\[\text{Sample} = R(s, \pi(s), s') + \gamma V^\pi(s') \]

Update to V(s):

\[V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)\text{sample} \]

Same update:

\[V^\pi(s) \leftarrow V^\pi(s) + \alpha(\text{sample} - V^\pi(s)) \]

Example: Temporal Difference Learning

<table>
<thead>
<tr>
<th>States</th>
<th>Observed Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B, east, C, -2</td>
</tr>
<tr>
<td>B</td>
<td>C, east, D, -2</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

Assume: \(\gamma = 1, \alpha = 1/2 \)

\[V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha [R(s, \pi(s), s') + \gamma V^\pi(s')] \]

Exponential Moving Average

- **Exponential moving average**
 - The running interpolation update:
 \[\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n \]
 - Makes recent samples more important:
 \[\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots} \]
 - Forgets about the past (distant past values were wrong anyway)
 - Decreasing learning rate (alpha) can give converging averages

Problems with TD Value Learning

- TD value learning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
 - However, if we want to turn values into a (new) policy, we’re sunk:
 \[\pi(s) = \arg \max_a Q(s, a) \]
 \[Q(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V(s')] \]
 - Idea: learn Q-values, not values
 - Makes action selection model-free too!
Active Reinforcement Learning

- **Full reinforcement learning:** optimal policies (like value iteration)
 - You don’t know the transitions \(T(s, a, s') \)
 - You don’t know the rewards \(R(s, a, s') \)
 - You choose the actions now
 - **Goal:** learn the optimal policy / values

- **In this case:**
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...

Detour: Q-Value Iteration

- **Value iteration:** find successive (depth-limited) values
 - Start with \(V_0(s) = 0 \), which we know is right
 - Given \(V_k \), calculate the depth \(k+1 \) values for all states:
 \[
 V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
 \]
 - But Q-values are more useful, so compute them instead
 - Start with \(Q_0(s, a) = 0 \), which we know is right
 - Given \(Q_k \), calculate the depth \(k+1 \) q-values for all q-states:
 \[
 Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
 \]

Q-Learning

- **Q-Learning:** sample-based Q-value iteration
 \[
 Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
 \]
 - **Learn** \(Q(s, a) \) values as you go
 - Receive a sample \((s, a, s', r)\)
 - Consider your old estimate: \(Q(s, a) \)
 - Consider your new sample estimate:
 \[
 \text{sample} = R(s, a, s') + \gamma \max_{a'} Q(s', a')
 \]
 - Incorporate the new estimate into a running average:
 \[
 Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \text{[sample]}
 \]

Active Reinforcement Learning

- **In this case:**
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!
 - This is called off-policy learning

- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions (!)