Reinforcement Learning

- We still assume an MDP:
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s,a,s')$
 - A reward function $R(s,a,s')$
- Still looking for a policy $\pi(s)$

- New twist: don’t know T or R, so must try out actions

- Big idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^$, $Q^$, π^*</td>
<td>Value / policy iteration</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>Policy evaluation</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Based

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^$, $Q^$, π^*</td>
<td>VI/PI on approx. MDP</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>PE on approx. MDP</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Free

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^$, $Q^$, π^*</td>
<td>Q-learning</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>Value Learning</td>
</tr>
</tbody>
</table>

Model-Free Learning

- Model-free (temporal difference) learning
 - Experience world through episodes
 $$(s, a, r, s', a', r', s'', a''', r'''', s''''', \ldots)$$
 - Update estimates each transition (s, a, r, s')
 - Over time, updates will mimic Bellman updates
Q-Learning

- We’d like to do Q-value updates to each Q-state:
 \[Q_{k+1}(s, a) \leftarrow \beta \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]
 - But can’t compute this update without knowing \(T, R \)

- Instead, compute average as we go
 - Receive a sample transition \((s, a, r, s')\)
 - This sample suggests
 \[Q(s, a) \approx r + \gamma \max_{a'} Q(s', a') \]
 - But we want to average over results from \((s, a)\) (Why?)
 - So keep a running average
 \[Q(s, a) \leftarrow (1 - \alpha) Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') \right] \]

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

- This is called off-policy learning

- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - … but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions (!)

Video of Demo Q-Learning Auto Cliff Grid

[Demo: Q-learning – auto – cliff grid (L1D1)]

Exploration vs. Exploitation

[The Usual Place]

[Grand Opening]

[?]

[Demo: Q-learning – auto – cliff grid (L1D1)]
How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ɛ-greedy)
 - Every time step, flip a coin
 - With (small) probability ϵ, act randomly
 - With (large) probability $1-\epsilon$, act on current policy
 - Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ϵ over time
 - Another solution: exploration functions

Video of Demo Q-learning – Manual Exploration – Bridge Grid

Video of Demo Q-learning – Epsilon-Greedy – Crawler

Exploration Functions

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

- Exploration function
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. $f(u, n) = u + k/n$
 - Regular Q-Update: $Q(s, a) \leftarrow R(s, a, s') + \gamma \max_{a'} Q(s', a')$
 - Modified Q-Update: $Q(s, a) \leftarrow R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$
 - Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: Q-learning – manual exploration – bridge grid (L11D2)]
[Demo: Q-learning – epsilon-greedy – crawler (L11D3)]
[Video of Demo Q-learning – Manual Exploration – Bridge Grid]
[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]
Even if you learn the optimal policy, you still make mistakes along the way!

- Regret is a measure of your total mistake cost: the difference between your [expected] rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

Approximate Q-Learning

Basic Q-Learning keeps a table of all q-values

In realistic situations, we cannot possibly learn about every single state!

- Too many states to visit them all in training
- Too many states to hold the q-tables in memory

Instead, we want to generalize:

- Learn about some small number of training states from experience
- Generalize that experience to new, similar situations
- This is a fundamental idea in machine learning, and we’ll see it over and over again

Generalizing Across States

Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret
Example: Pacman

Let’s say we discover through experience that this state is bad: In naïve q-learning, we know nothing about this state: Or even this one!

Video of Demo Q-Learning Pacman – Tiny – Watch All

Video of Demo Q-Learning Pacman – Tiny – Silent Train

Video of Demo Q-Learning Pacman – Tricky – Watch All
Feature-Based Representations

- **Solution:** describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - $1 / (\text{dist to dot})^2$
 - Is Pacman in a tunnel? (0/1)
 - ... etc.
 - Can also describe a q-state $[s, a]$ with features (e.g. action moves closer to food)

Linear Value Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:
 $$ V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) $$
 $$ Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) $$
 - Advantage: our experience is summed up in a few powerful numbers
 - Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

- **Q-learning with linear Q-functions:**
 - transition $= (s, a, r, s')$
 - difference $= r + \gamma \max_{a'} Q(s', a') - Q(s, a)$
 - $Q(s, a) \leftarrow Q(s, a) + \alpha \left[\text{difference} \right] f_i(s, a)$
 - $w_i \leftarrow w_i + \alpha \left[\text{difference} \right] f_i(s, a)$
 - Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state’s features
 - Formal justification: online least squares

Example: Q-Pacman

- **Q(s, a) = 4.0 f_{DOT}(s, a) - 1.0 f_{GST}(s, a)**

Exact Q’s

- $f_{DOT}(s, \text{NORTH}) = 0.5$
- $f_{GST}(s, \text{NORTH}) = 1.0$
- $Q(s, \text{NORTH}) = +1$
- $r = -500$
- $Q'(s', \cdot) = 0$

Approximate Q’s

- $Q(s, a) \leftarrow w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5$
- $w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0$
- $Q(s, a) = 3.0 f_{DOT}(s, a) - 3.0 f_{GST}(s, a)$
Video of Demo Approximate Q-Learning -- Pacman

Q-Learning and Least Squares

Linear Approximation: Regression*

Optimization: Least Squares*

Prediction:
\[\hat{y} = w_0 + w_1 f_1(x) \]

Prediction:
\[\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x) \]

\[
\text{total error} = \sum_i (y_i - \hat{y}_i)^2 = \sum_i \left(y_i - \sum_k w_k f_k(x_i) \right)^2
\]
Minimizing Error

Imagine we had only one point x, with features $f(x)$, target value y, and weights w:

$$\text{error}(w) = \frac{1}{2} \left(y - \sum_k w_k f_k(x)\right)^2$$

$$\frac{\partial \text{error}(w)}{\partial w_m} = -\left(y - \sum_k w_k f_k(x)\right) f_m(x)$$

$$w_m \leftarrow w_m + \alpha \left(y - \sum_k w_k f_k(x)\right) f_m(x)$$

Approximate q update explained:

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a)\right] f_m(s, a)$$

“target” “prediction”

Overfitting: Why Limiting Capacity Can Help

Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren’t the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - Q-learning’s priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
 - We’ll see this distinction between modeling and prediction again later in the course

- Solution: learn policies that maximize rewards, not the values that predict them

- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights
Policy Search

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before

- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical

- Better methods exploit lookahead structure, sample wisely, change multiple parameters...

Conclusion

- We’re done with Part I: Search and Planning!
- We’ve seen how AI methods can solve problems in:
 - Search
 - Constraint Satisfaction Problems
 - Games
 - Markov Decision Problems
 - Reinforcement Learning