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Nonregular Languages: Overview  

1. Not all languages are regular!  As an example, we’ll show the
language {0n1n | n in Nat} is not regular.

2. Generalize the technique for #1 by developing the pumping lemma. 
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3. Give examples of using the pumping lemma (sometimes in 
conjunction with closure properties of regular languages) to
prove-by-contradiction that certain languages aren’t regular. 



2

0n1n is Not a Regular Language  
Proof by Contradiction: Suppose On1n is a regular language. 
Then it is accepted by a DFA. Suppose the DFA has k states. 

Now consider the labeled path for accepting the string 0k1k:
0 0 0 0 0 0 0 1k0 0 0 0 0 0 0 0 0…0 1k

k+1 states

By the pigeonhole principle, 2 of the first k+1 states must be the same:
0 0 0 0 0 0 0 0 0…0 1k

So the path has the form: 0b
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So the path has the form: 
0a 0c 1k

0

where a + b + c = k and b > 0

This means the DFA also accepts strings 0a0ib0c1k for any i  Nat.
But for i  1, these strings do not have the form 0n1n for some n.
This contradicts the assumption that there is a DFA for 0n1n.  X

Generalizing the Technique: Intuition
Suppose L is an infinite regular language.

Any regular expression for L must contain a “nontrivial” *
(i.e., after weak simplification).  

So it is accepted by an FA (and a DFA) with at least one loop. 

Any sufficiently long string s  L must traverse some loop, 
and so can be decomposed into xyz, where y is nonempty and 
xyiz  L for any i  Nat. 

x z
y
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We say that the substring y of s can be pumped.

q
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Generalizing the Technique: The Pumping Lemma  

The Pumping Lemma
If L is a regular language, there is a number p (the pumping length) 
such that any string s  L with length ≥ p can be expressed as xyz, 
where: 

x z
y

1. |y| > 0

2. |xy|  p
3. xyiz  L for each i  Nat. 

Proof sketch: Let p be the number of 
states in a DFA for L and q be the first
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x zstates in a DFA for L and q be the first
repeated state in the path for s (which 
must exist by the pigeonhole principle).
Use q to divide s into xyz.  

q

Using the Pumping Lemma to Prove L Nonregular
The pumping lemma says every sufficiently long string in a regular
language has a parse that can be pumped and still be in the language.

To prove a language nonregular, we just need to find 
one counterexample string!p g

Towards a contradiction, assume L is regular. 

By the pumping lemma, there is a p such that all strings s  L with 
length ≥ p can be pumped.  

Find some string s  L with length ≥ p for which pumping is 
problematic. I.e., every decomposition of s into xyz with |y| > 0 

d | | l d  t   t i  i L f  i N t  
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and |xy|  p leads to a string xyiz  L for some i  Nat. 

Therefore, the assumption that L is regular is false.  X
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Game vs. Demon
Using the pumping lemma to prove a language nonregular
can be viewed as a game vs. a demon: 

1. You: give the demon the language L
2  Demon: gives you p2. Demon: gives you p
3. You: give the demon string s  L with |s| ≥ p. 

4. Demon: divides s into xyz such that
|y| > 0 and |xy|  p

5. You: give the demon an i such that xyiz  L.

Notes: 
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• The demon will make your task as difficult as possible 
in step #4.  He gets to chose the worst possible 
parse of s into xyz .  You do not et to choose 
a parse that  happens to be good for you. 

• A clever choice of s in step #3 can tie the
demon’s hands in step #4,  and make your
life much easier in step #5. 

L1 = {On1n | n  Nat} revisited 

Viewed as game vs. a demon: 

1. You: give the demon the language L1

2. Demon: gives you pg y p
3. You: give the demon a string s  L1 with |s| ≥ p.  E.g.: 

s1 = 0p/21p/2  (for simplicity, assume p is even)

s2 = 0p1p

4. Demon: divides s into xyz such that |y| > 0 and |xy|  p. 
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5. You: give the demon an i such that xyiz  L1

Moral: Since you get to pick string s, choose one that saves you work!
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How to Write a Pumping Lemma Proof

Towards a contradiction, suppose L1 were regular. 

By the pumping lemma for regular languages, there is a pumping 

Here’s how to write a formal proof that L1 is not regular. 

y p p g g g g p p g
length p such that the string s = 0p1p in L1 would be pumpable ---
i.e., parsable into xyz such that y is nonempty, |xy|  p, 
and xyiz  L1  for all i  Nat.

s must be parsed as x = 0a, y = 0b, z = 0c1p, where a,b,c  Nat,
a + b + c = p, and b  0. 

But xyiz = 0a+bi+c1p = 0p+b(i-1)1p, which L1 for any i  1. 
So L cannot be regular  
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So L1 cannot be regular. 

You should write pumping lemma proofs on PS7 in this format!

L2 = {w | w has equal # of 0s and 1s} 
1. You: give the demon the language L2

2. Demon: gives you p
3. You: give the demon a string s  L2 with |s| ≥ p.  

Which ones below work?

s1 = 0p/21p/2

s2 = 0p1p

s3 =  (01)p

4. Demon: divides s into xyz such that |y| > 0 and |xy|  p
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5. You: give the demon an i such that xyiz  L2

Moral: not all strings s work! (But just need one.)
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L2 : A Simpler Approach using Closure Properties

Suppose L2 is regular. 

Then L2  0*1* is regular.  Why? 

So L2 can’t be regular. Why?

The Pumping Lemma 20-11

Moral: Closure properties of regular languages are helpful for  
proving languages nonregular!

Intuition: Regular Languages “Can’t Count”
Intuitively, the pumping lemma says that regular languages 
(equivalently, finite automata) can’t count arbitrarily high –
they’ll get confused beyond k = the number of states. 

This is why L and L aren’t regular: This is why L1 and L2 aren t regular: 

L1 = {0n1n | n  Nat}

L2 = {w | w has equal # of 0s and 1s}

But be careful!  This intuition can sometimes lead you astray!

For example  the following languages are regular:

The Pumping Lemma 20-12

For example, the following languages are regular:

{w | w in {0,1}* and has equal # of 01s and 10s}  (PS4) 

{1ky | y in {0,1}* and y contains at least k 1s, for k ≥ 1} (PS7)
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Pumping Down: L3 = {0i1j | i > j} 
1. You: give the demon the language L3

2. Demon: gives you p
3. You: give the demon what string s  L3 with |s| ≥ p? 

4. Demon: divides s into xyz such that |y| > 0 and |xy|  p

The Pumping Lemma 20-13

5. You: give the demon an i such that xyiz  L3

Moral: Sometimes i needs to be 0. This is called “pumping down”. 

L4 = {ww | w  {0,1}*} 
1. You: give the demon the language L4

2. Demon: gives you p
3. You: give the demon what string s  L4 with |s| ≥ p?

4. Demon: divides s into xyz such that |y| > 0 and |xy|  p
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5. You: give the demon an i such that xyiz  L4.

Moral: Again, choosing s carefully can save you lots of work!
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L5 = {1n2 | n  0} 
1. You: give the demon the language L5

2. Demon: gives you p
3. You: give the demon what string s  L5 with |s| ≥ p? 

4. Demon: divides s into xyz such that |y| > 0 and |xy|  p
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5. You: give the demon an i such that xyiz  L5.

Moral: Arithmetic details matter!

Pumpable Languages

Pumpability

A language L is pumpable iff there is a number p (the pumping length) 
such that any string s  L with length ≥ p can be expressed as xyz, 

h  where: 

1. |y| > 0

2. |xy|  p
3. xyiz  L for each i  Nat. 

The pumping lemma says:

The Pumping Lemma 20-16

L is regular  L is pumpable

Careful: the converse is not true!

L is pumpable  L is regular (Sipser 1.54, PS7 Prob3)


