
1

The Pumping Lemma
A Technique for Proving

that Languages are Nonregular

CS235 Languages and Automata

Friday, October 22, 2010
Reading: Sipser 1.4, Stoughton 3.13

CS235 Languages and Automata

Department of Computer Science
Wellesley College

Nonregular Languages: Overview

1. Not all languages are regular! As an example, we’ll show the
language {0n1n | n in Nat} is not regular.

2. Generalize the technique for #1 by developing the pumping lemma.

(01)*0*1*
00*

0*1*+(01)*Reg

Lan 0n1n

The Pumping Lemma 20-2

3. Give examples of using the pumping lemma (sometimes in
conjunction with closure properties of regular languages) to
prove-by-contradiction that certain languages aren’t regular.

2

0n1n is Not a Regular Language
Proof by Contradiction: Suppose On1n is a regular language.
Then it is accepted by a DFA. Suppose the DFA has k states.

Now consider the labeled path for accepting the string 0k1k:
0 0 0 0 0 0 0 1k0 0 0 0 0 0 0 0 0…0 1k

k+1 states

By the pigeonhole principle, 2 of the first k+1 states must be the same:
0 0 0 0 0 0 0 0 0…0 1k

So the path has the form: 0b

The Pumping Lemma 20-3

So the path has the form:
0a 0c 1k

0

where a + b + c = k and b > 0

This means the DFA also accepts strings 0a0ib0c1k for any i  Nat.
But for i  1, these strings do not have the form 0n1n for some n.
This contradicts the assumption that there is a DFA for 0n1n. X

Generalizing the Technique: Intuition
Suppose L is an infinite regular language.

Any regular expression for L must contain a “nontrivial” *
(i.e., after weak simplification).

So it is accepted by an FA (and a DFA) with at least one loop.

Any sufficiently long string s  L must traverse some loop,
and so can be decomposed into xyz, where y is nonempty and
xyiz  L for any i  Nat.

x z
y

The Pumping Lemma 20-4

We say that the substring y of s can be pumped.

q

3

Generalizing the Technique: The Pumping Lemma

The Pumping Lemma
If L is a regular language, there is a number p (the pumping length)
such that any string s  L with length ≥ p can be expressed as xyz,
where:

x z
y

1. |y| > 0

2. |xy|  p
3. xyiz  L for each i  Nat.

Proof sketch: Let p be the number of
states in a DFA for L and q be the first

The Pumping Lemma 20-5

x zstates in a DFA for L and q be the first
repeated state in the path for s (which
must exist by the pigeonhole principle).
Use q to divide s into xyz.

q

Using the Pumping Lemma to Prove L Nonregular
The pumping lemma says every sufficiently long string in a regular
language has a parse that can be pumped and still be in the language.

To prove a language nonregular, we just need to find
one counterexample string!p g

Towards a contradiction, assume L is regular.

By the pumping lemma, there is a p such that all strings s  L with
length ≥ p can be pumped.

Find some string s  L with length ≥ p for which pumping is
problematic. I.e., every decomposition of s into xyz with |y| > 0

d | | l d t t i i L f i N t

The Pumping Lemma 20-6

and |xy|  p leads to a string xyiz  L for some i  Nat.

Therefore, the assumption that L is regular is false. X

4

Game vs. Demon
Using the pumping lemma to prove a language nonregular
can be viewed as a game vs. a demon:

1. You: give the demon the language L
2 Demon: gives you p2. Demon: gives you p
3. You: give the demon string s  L with |s| ≥ p.

4. Demon: divides s into xyz such that
|y| > 0 and |xy|  p

5. You: give the demon an i such that xyiz  L.

Notes:

The Pumping Lemma 20-7

• The demon will make your task as difficult as possible
in step #4. He gets to chose the worst possible
parse of s into xyz . You do not et to choose
a parse that happens to be good for you.

• A clever choice of s in step #3 can tie the
demon’s hands in step #4, and make your
life much easier in step #5.

L1 = {On1n | n  Nat} revisited

Viewed as game vs. a demon:

1. You: give the demon the language L1

2. Demon: gives you pg y p
3. You: give the demon a string s  L1 with |s| ≥ p. E.g.:

s1 = 0p/21p/2 (for simplicity, assume p is even)

s2 = 0p1p

4. Demon: divides s into xyz such that |y| > 0 and |xy|  p.

The Pumping Lemma 20-8

5. You: give the demon an i such that xyiz  L1

Moral: Since you get to pick string s, choose one that saves you work!

5

How to Write a Pumping Lemma Proof

Towards a contradiction, suppose L1 were regular.

By the pumping lemma for regular languages, there is a pumping

Here’s how to write a formal proof that L1 is not regular.

y p p g g g g p p g
length p such that the string s = 0p1p in L1 would be pumpable ---
i.e., parsable into xyz such that y is nonempty, |xy|  p,
and xyiz  L1 for all i  Nat.

s must be parsed as x = 0a, y = 0b, z = 0c1p, where a,b,c  Nat,
a + b + c = p, and b  0.

But xyiz = 0a+bi+c1p = 0p+b(i-1)1p, which L1 for any i  1.
So L cannot be regular

The Pumping Lemma 20-9

So L1 cannot be regular.

You should write pumping lemma proofs on PS7 in this format!

L2 = {w | w has equal # of 0s and 1s}
1. You: give the demon the language L2

2. Demon: gives you p
3. You: give the demon a string s  L2 with |s| ≥ p.

Which ones below work?

s1 = 0p/21p/2

s2 = 0p1p

s3 = (01)p

4. Demon: divides s into xyz such that |y| > 0 and |xy|  p

The Pumping Lemma 20-10

5. You: give the demon an i such that xyiz  L2

Moral: not all strings s work! (But just need one.)

6

L2 : A Simpler Approach using Closure Properties

Suppose L2 is regular.

Then L2  0*1* is regular. Why?

So L2 can’t be regular. Why?

The Pumping Lemma 20-11

Moral: Closure properties of regular languages are helpful for
proving languages nonregular!

Intuition: Regular Languages “Can’t Count”
Intuitively, the pumping lemma says that regular languages
(equivalently, finite automata) can’t count arbitrarily high –
they’ll get confused beyond k = the number of states.

This is why L and L aren’t regular: This is why L1 and L2 aren t regular:

L1 = {0n1n | n  Nat}

L2 = {w | w has equal # of 0s and 1s}

But be careful! This intuition can sometimes lead you astray!

For example the following languages are regular:

The Pumping Lemma 20-12

For example, the following languages are regular:

{w | w in {0,1}* and has equal # of 01s and 10s} (PS4)

{1ky | y in {0,1}* and y contains at least k 1s, for k ≥ 1} (PS7)

7

Pumping Down: L3 = {0i1j | i > j}
1. You: give the demon the language L3

2. Demon: gives you p
3. You: give the demon what string s  L3 with |s| ≥ p?

4. Demon: divides s into xyz such that |y| > 0 and |xy|  p

The Pumping Lemma 20-13

5. You: give the demon an i such that xyiz  L3

Moral: Sometimes i needs to be 0. This is called “pumping down”.

L4 = {ww | w  {0,1}*}
1. You: give the demon the language L4

2. Demon: gives you p
3. You: give the demon what string s  L4 with |s| ≥ p?

4. Demon: divides s into xyz such that |y| > 0 and |xy|  p

The Pumping Lemma 20-14

5. You: give the demon an i such that xyiz  L4.

Moral: Again, choosing s carefully can save you lots of work!

8

L5 = {1n2 | n  0}
1. You: give the demon the language L5

2. Demon: gives you p
3. You: give the demon what string s  L5 with |s| ≥ p?

4. Demon: divides s into xyz such that |y| > 0 and |xy|  p

The Pumping Lemma 20-15

5. You: give the demon an i such that xyiz  L5.

Moral: Arithmetic details matter!

Pumpable Languages

Pumpability

A language L is pumpable iff there is a number p (the pumping length)
such that any string s  L with length ≥ p can be expressed as xyz,

h where:

1. |y| > 0

2. |xy|  p
3. xyiz  L for each i  Nat.

The pumping lemma says:

The Pumping Lemma 20-16

L is regular  L is pumpable

Careful: the converse is not true!

L is pumpable  L is regular (Sipser 1.54, PS7 Prob3)

