

CS235 Languages and Automata

Department of Computer Science Wellesley College

L₁ = {Oⁿ1ⁿ | n ∈ Nat} revisited Viewed as game vs. a demon: You: give the demon the language L₁ Demon: gives you p You: give the demon a string s ∈ L₁ with |s| ≥ p. E.g.: s₁ = 0^{p/2}1^{p/2} (for simplicity, assume p is even) s₂ = 0^{p1p} Demon: divides s into xyz such that |y| > 0 and |xy| ≤ p. You: give the demon an *i* such that xy'z ∉ L₁ Moral: Since you get to pick string s, choose one that saves you work!

How to Write a Pumping Lemma Proof Here's how to write a formal proof that L_1 is not regular. Towards a contradiction, suppose L_1 were regular. By the pumping lemma for regular languages, there is a pumping length p such that the string $s = 0^{p_1 p}$ in L_1 would be pumpable ---i.e., parsable into xyz such that y is nonempty, $|xy| \le p$, and $xy'z \in L_1$ for all $i \in Nat$. s must be parsed as $x = 0^a$, $y = 0^b$, $z = 0^{c_1 p}$, where a,b, $c \in Nat$, a + b + c = p, and $b \ge 0$.

But $xy^i z = 0^{a+bi+c} 1^p = 0^{p+b(i-1)} 1^p$, which $\notin L_1$ for any $i \neq 1$. So L_1 cannot be regular.

You should write pumping lemma proofs on PS7 in this format!

The Pumping Lemma 20-9

Pumpable Languages
Pumpability
A language L is pumpable iff there is a number p (the pumping length) such that any string $s \in L$ with length $\ge p$ can be expressed as xyz , where:
1. <i>y</i> > 0
2. $ xy \le p$
3. $xy^iz \in L$ for each $i \in Nat$.
The pumping lemma says:
L is regular \Rightarrow L is pumpable
Careful: the converse is not true!
L is pumpable ≠ L is regular (Sipser 1.54, PS7 Prob3)
The Pumping Lemma 20-16