The Pumping Lemma
 A Technique for Proving that Languages are Nonregular

Friday, October 22, 2010
Reading: Sipser 1.4, Stoughton 3.13

CS235 Languages and Automata

Department of Computer Science
Wellesley College

Nonregular Languages: Overview

1. Not all languages are regular! As an example, we'll show the language $\left\{0^{n 1} 1^{n} \mid n\right.$ in $\left.\mathrm{Na} t\right\}$ is not regular.

2. Generalize the technique for \#1 by developing the pumping lemma.
3. Give examples of using the pumping lemma (sometimes in conjunction with closure properties of regular languages) to prove-by-contradiction that certain languages aren't regular.

On1n is Not a Regular Language

Proof by Contradiction: Suppose $\mathrm{O}^{n 1 n}$ is a regular language. Then it is accepted by a DFA. Suppose the DFA has k states.
Now consider the labeled path for accepting the string $0^{k} 1^{k}$:

By the pigeonhole principle, 2 of the first $k+1$ states must be the same:

So the path has the form: ${ }^{0^{b}}$

This means the DFA also accepts strings $0^{a} 0^{i b} 0^{c} 1^{k}$ for any $i \in N a t$.
But for $i \neq 1$, these strings do not have the form $0^{n 1 n}$ for some n. This contradicts the assumption that there is a DFA for $0^{n 1}{ }^{n}$. X

Generalizing the Technique: Intuition

Suppose L is an infinite regular language.
Any regular expression for L must contain a "nontrivial" * (i.e., after weak simplification).

So it is accepted by an FA (and a DFA) with at least one loop.
Any sufficiently long string $s \in L$ must traverse some loop, and so can be decomposed into $x y z$, where y is nonempty and $x y i z \in L$ for any $i \in$ Nat.

We say that the substring y of s can be pumped.

Generalizing the Technique: The Pumping Lemma

The Pumping Lemma
If L is a regular language, there is a number p (the pumping length) such that any string $s \in L$ with length $\geq p$ can be expressed as $x y z$, where:

1. $|y|>0$
2. $|x y| \leq p$
3. $x y^{i} z \in L$ for each $i \in$ Nat.

Proof sketch: Let p be the number of states in a DFA for L and q be the first repeated state in the path for s (which must exist by the pigeonhole principle). Use q to divide s into $x y z$.

Using the Pumping Lemma to Prove L Nonregular

The pumping lemma says every sufficiently long string in a regular language has a parse that can be pumped and still be in the language.
To prove a language nonregular, we just need to find one counterexample string!

Towards a contradiction, assume L is regular.
By the pumping lemma, there is a p such that all strings $s \in L$ with length $\geq p$ can be pumped.

Find some string $s \in L$ with length $\geq p$ for which pumping is problematic. I.e., every decomposition of s into $x y z$ with $|y|>0$ and $|x y| \leq p$ leads to a string $x y z \notin L$ for some $i \in$ Nat.
Therefore, the assumption that L is regular is false. X

Game vs. Demon

Using the pumping lemma to prove a language nonregular can be viewed as a game vs. a demon:

1. You: give the demon the language L
2. Demon: gives you p
3. You: give the demon string $s \in L$ with $|s| \geq p$.
4. Demon: divides s into $x y z$ such that $|y|>0$ and $|x y| \leq p$
5. You: give the demon an isuch that $x y^{\prime} z \notin L$.

Notes:

- The demon will make your task as difficult as possible in step \#4. He gets to chose the worst possible parse of sinto $x y z$. You do not et to choose a parse that happens to be good for you.
- A clever choice of s in step \#3 can tie the demon's hands in step \#4, and make your life much easier in step \#5.

$L_{1}=\left\{O^{n 1 n} \mid n \in\right.$ Nat $\}$ revisited

Viewed as game vs. a demon:

1. You: give the demon the language L_{1}
2. Demon: gives you p
3. You: give the demon a string $s \in L_{1}$ with $|s| \geq p$. E.g.:

$$
\begin{aligned}
& s_{1}=0 p / 21 p / 2 \text { (for simplicity, assume } p \text { is even) } \\
& s_{2}=0 p 1 p
\end{aligned}
$$

4. Demon: divides sinto $x y z$ such that $|y|>0$ and $|x y| \leq p$.
5. You: give the demon an isuch that $x y^{i} z \notin L_{1}$

Moral: Since you get to pick string s, choose one that saves you work!

How to Write a Pumping Lemma Proof

Here's how to write a formal proof that L_{1} is not regular.
Towards a contradiction, suppose L_{1} were regular.
By the pumping lemma for regular languages, there is a pumping length p such that the string $s=0{ }^{01 p}$ in L_{1} would be pumpable --i.e., parsable into $x y z$ such that y is nonempty, $|x y| \leq p$, and $x y z \in L_{1}$ for all $i \in$ Nat.
s must be parsed as $x=0^{a}, y=0^{b}, z=0^{c 1 p}$, where $a, b, c \in N a t$, $a+b+c=p$, and $b \geq 0$.
But $x y^{\prime} z=0^{a+b i+c} 1^{p}=0^{p+b(i-1)} 1^{p}$, which $\notin L_{1}$ for any $\mathrm{i} \neq 1$.
So L_{1} cannot be regular.
You should write pumping lemma proofs on PS7 in this format!

$L_{2}=\{w \mid w$ has equal \# of Os and 1s $\}$

1. You: give the demon the language L_{2}
2. Demon: gives you p
3. You: give the demon a string $s \in L_{2}$ with $|s| \geq p$.

Which ones below work?

$$
\begin{aligned}
& s_{1}=0 \mathrm{p} / 21 \mathrm{p} / 2 \\
& s_{2}=0 \mathrm{p} 1 \mathrm{p} \\
& s_{3}=(01)^{\mathrm{p}}
\end{aligned}
$$

4. Demon: divides s into $x y z$ such that $|y|>0$ and $|x y| \leq p$
5. You: give the demon an isuch that $x y^{i} z \notin L_{2}$

Moral: not all strings s work! (But just need one.)

L_{2} : A Simpler Approach using Closure Properties

Suppose L_{2} is regular.

Then $L_{2} \cap 0^{\star} 1^{\star}$ is regular. Why?

So L_{2} can't be regular. Why?

Moral: Closure properties of regular languages are helpful for proving languages nonregular!

Intuition: Regular Languages "Can'† Count"

Intuitively, the pumping lemma says that regular languages (equivalently, finite automata) can't count arbitrarily high they'll get confused beyond $k=$ the number of states.

This is why L_{1} and L_{2} aren't regular:

$$
\begin{aligned}
& L_{1}=\left\{0 n 1^{n} \mid n \in N a t\right\} \\
& L_{2}=\{w \mid w \text { has equal \# of Os and } 1 s\}
\end{aligned}
$$

But be careful! This intuition can sometimes lead you astray! For example, the following languages are regular:
$\left\{w \mid w\right.$ in $\{0,1\}^{*}$ and has equal $\#$ of $01 s$ and 10s\} (PS4)
$\left\{1^{k} y \mid y\right.$ in $\{0,1\}^{*}$ and y contains at least $k 1 s$, for $\left.k \geq 1\right\}$ (PS7)

Pumping Down: $L_{3}=\{0 i 1 j \mid i>j\}$

1. You: give the demon the language L_{3}
2. Demon: gives you p
3. You: give the demon what string $s \in L_{3}$ with $|s| \geq p$?
4. Demon: divides sinto $x y z$ such that $|y|>0$ and $|x y| \leq p$
5. You: give the demon an isuch that $x y^{i} z \notin L_{3}$

Moral: Sometimes i needs to be 0 . This is called "pumping down".
$L_{4}=\left\{w w \mid w \in\{0,1\}^{\star}\right\}$

1. You: give the demon the language L_{4}
2. Demon: gives you p
3. You: give the demon what string $s \in L_{4}$ with $|s| \geq p$?
4. Demon: divides sinto $x y z$ such that $|y|>0$ and $|x y| \leq p$
5. You: give the demon an isuch that $x y^{i} z \notin L_{4}$.

Moral: Again, choosing s carefully can save you lots of work!

$$
L_{5}=\left\{1 n^{2} \mid n \geq 0\right\}
$$

1. You: give the demon the language L_{5}
2. Demon: gives you p
3. You: give the demon what string $s \in L_{5}$ with $|s| \geq p$?
4. Demon: divides sinto $x y z$ such that $|y|>0$ and $|x y| \leq p$
5. You: give the demon an isuch that $x y^{\prime} z \notin L_{5}$.

Moral: Arithmetic details matter!

Pumpable Languages

Pumpability

A language L is pumpable iff there is a number p (the pumping length) such that any string $s \in L$ with length $\geq p$ can be expressed as $x y z$, where:

1. $|y|>0$
2. $|x y| \leq p$
3. $x y^{\prime} z \in L$ for each $i \in$ Nat.

The pumping lemma says:
L is regular $\Rightarrow L$ is pumpable
Careful: the converse is not true!
L is pumpable $\nRightarrow L$ is regular (Sipser 1.54, PS7 Prob3)

