Regular Language Applications

Friday, October 21, 2011
Reading: Stoughton 3.14, Kozen Chs. 7-8

€S235 Languages and Automata

Department of Computer Science
Wellesley College

Some Applications of Regular Languages

Automata = finite state machines (or extensions thereof)
used in many disciplines

Efficient string searching

Pattern matching with regular expressions
(example: Unix grep utility)

Lexical analysis (a.k.a. scanning, tokenizing) in a compiler
(the topic of a lecture later in the course)

Regular Language Applications 22-2

€S240: FSM for Instruction Execution
(Patterson & Hennessey, Computer Organization
and Design) —————

......

Regular Language Applications 22-3

CS242: Reliable Data Transmission (sender)
(Kurose & Ross, Computer Networking)

rdt_send(data)

sndpkt=make_pkt (0,data, checksum)
udt_send (sndpkt)

rdt_rcv(rcvpkt) &&

e /\ (corrupt (rcvpkt) | |
~a isNAK (rcvpkt))
Wait for Wait for udt_send (sndpkt)

call 0 from ACK or

above NAK 0
rdt_rcv(revpkt) rdt_rcv(revpkt)
&& notcorrupt (revpkt), && notcorrupt (revpkt)
&& iSACK (revpkt) && isACK (rcvpkt)
A A
Wait for Wait for
ACK or call 1 from
NAK 1 above
rdt_rcv(rcvpkt) &&
(corrupt (rcvpkt) | |
1SNAK (rcvpkt))
udt_send (sndpkt) rdt_send(data)

sndpkt=make_pkt (1,data, checksum)
udt_send (sndpkt)

Regular Language Applications 22-4

Markov Models

recover

suvive D e
Py “_stay sick

Disease - ———] Disease
Cuisiclys SRR ! *
- Markov Information die
Init Rwd: uDisease 4 Dead
Incr Rwd: ubisease (Xl
Final Rwd: 0
1
no relapse
1 well
Three-State Markov ol e AT #
————— relapse
Disease=1 well * P <] Disease
¥ 9 015
" orton die
e b] Dead
Incr Rwd: uWell oo
Final Rwd: 0
Dead ,
~ Markov Information 1
Init Rwd: 0
Incr Rwd: 0 www.treeage.com/learnMore/MarkovModels.html
Final Rwd: 0

0

Regular Language Applications 22-5

DFAs in User Interfaces

Example:

Black Diamond Storm headlamp
provides access to all features via
a single button. Can construct a
DFA to explain the interface.

www.treeage.com/learnMore/MarkovModels.html

Regular Language Applications 22-6

Naive String Searching

How to search for abbaba in abbabcabbabbaba?

_alb/blalbl/cla/blblalb/blabla|
alb|bja|b|a
a

Regular Language Applications 22-7

More Efficient String Searching

Knuth-Morris-Pratt algorithm: construct a DFA for
searched-for string, and use it to do searching.

How to construct this
DFA automatically?

alb|a

Regular Language Applications 22-8

Pattern Matching with Regular Expressions

Can turn any regular expression (possibly extended with complement,
intersection, and difference) into a DFA and use it for string
searching.

This idea is used in many systems/languages:

grep: Unix utility that searches for lines in files matching a
pattern. ("grep" comes from g/re/p command in the ed editor.)

sed: Unix stream editor
awk: text-manipulation language

Perl: general-purpose programming language with
built-in pattern matching

JavaScript: can use regular expressions for form validation.
Java, Python, etc.: have support for regular expressions.
Emacs: supports regular expression search

Regular Language Applications 22-9

Some grep Patterns

Pattern Matches
c the character 'c’
. any character except newline
[a-zA-Z0-9] any alphahumeric character
["d-g] any character except lowercase d.e f,g
\w synonym for [a-zA-Z0-9]
\W synonym for [“a-zA-Z0-9]
[[:space:]] all whitespace characters
~ beginning of line
$ end of line
\< beginning of word
\> end of word
rirs r; followed by r,, where r;, r, are reg. exps.
rdr, ryorr,
zero or more rs, where r a reg. exp.
r+ one or more rs
r? zero or one rs
rn} exactly nrs
rn} nor more rs
r{n,m} between nand m rs
r r (parens for grouping)
\n the substring previously matched by the nth

arenthesized subexpression of the regular expression
not regular in general!)
Regular Language Applications 22-10

Some grep Examples

As a rule, grep patterns should be double-quoted to prevent Linux
from interpreting certain characters specially. (But \ is still a problem,
as we'll soon see.)

cd ~cs235/public_html
grep "a.*b.*c.*d" words.txt

grep ““a.*b.*c.*d" words.txt

grep "a*b.*c.*d$" words.txt

grep ""a.*b.*c.*d$" words.txt

grep ““a.*b.*c.*d$" wordlists/*words* (in Scowl! final database)

cd ~cs230/archive/cs230_fall04/download/collections
grep “delete[[:space:]]*(Object” *.java

grep "//*sorted" *.java

Regular Language Applications 22-11

A Powerful Combination: find With grep

Unix's £ind command enumerates all files in a directory. E.g

cd ~cs230/archive/cs230_fall04/download/
find .

In combination with grep, it can search all these files!
find . | xargs grep “delete[[:space:]]*(Object”

find -exec grep -H “delete[[:space:]]*(Object” {} \;

Regular Language Applications 22-12

Escapes in Grep Patterns

grep patterns use special metacharacters that (at least in some contexts) do
not stand for themselves:

2+ 1) Y. T % NI]

In order to reference the blue characters as themselves, it is necessary to
escape them with a backslash. E.g.,
$ is a pattern that matches the end of line
\$ is a pattern that matches the dollar sign character
\\ is a pattern that matches the backslash character
\\\\ is a pattern that matches two backslash characters in a row

But the backslash character is also an escape character in Linux! To safely
pass backslashes from Linux to grep, you should* type two backslashes for
every backslash you wish to send to grep. E.g.

grep "\\$" searches for the dollar sign character
grep "\\\\" searches for a single backslash
grep "\\\\\\\\" searches for two backslash characters in a row

*In some, but not all cases, a single backslash will suffice.
Regular Language Applications 22-13

What About the Red Metacharacters?

The red metacharacters are handled in a rather confusing way:

2+ 1 () {

In the basic regular expressions used by greﬁ, these characters stand for
themselves and must be escaped to have the metacharacter meaning. E.g.
grep “(ab)+" searches for the substring "(ab)+"
grep “(ab){2}" searches for the substring "(ab){2}"
grep “\\(ab\\)\\+" searches for any nonempty sequence of abs.
grep "\\(ab\\)\\{2\\}" searches two abs in a row.
grep "\\(\\)\\1" searches for two consecutive occurrences of the

same character

In the extended regular expressions used bé grep -E and egrep, these
characters are metacharacters and must be escaped to stand for
themselves.
egrep "(ab)+" searches for any nonempty sequence of abs.
egrep "(ab){2}" searches two abs in a row.
egrep "\\(ab\\)\\+" searches for the substring "(ab)+"
grep "\\(ab\\)\\{2\\}" searches for the substring "(ab){2}"
egrep "(.)\\1" searches for two consecutive occurrences of the

same character

: i |
Moral of the story: use egrep instead of grep! Regular Language Applications 22-14

egrep Examples
cd ~cs235/public_html /wordlists
egrep "(ab){2}" *words*
egrep "(a.*b){2}" *words*
egrep "(a.*b.*){2}" *words*
egrep "(a.*b)\\1" *words*
egrep "(a.*b).*\\1" *words*
egrep "(a.+b).*\\1" *words*
egrep "(a.+a).*\\1" *words*
egrep "(....)\\1" *words*
egrep "(....).*\\1" *words™*
egrep "(.).*(..).\\2.5\\1" *words*

wA * "o, *
egrep (NSNS *words Regular Language Applications 22-15

More Practical Examples

1. Write an egrep regular expression that matches only well-formed
short FirstClass usernames (e.g., fturbak, gdome, etfc.)

Such usernames consist of at least 2 and at most 8 characters and
are sequences of lowercase letters followed by at most 2 digits.

2. Write an egrep regular expression that matches only well-formed
email address of the form username®@ server.domain, where

username is any sequence of letters, numbers, underscores, and dots
that begins with a letter;

Server is any sequence of letters and numbers that begins with a letter;

Domain is one of com, edu, or gov.

Regular Language Applications 22-16

Regexp Support in Programming Languages

Many popular programming languages (Java, JavaScript, Python, Perl, etc.) have
built-in or library support for regular expressions.

E.g. Dive Into Python chapter on regular expressions:

Javascript example (Tanner'10 photo upload site):

function validRegistration() {
var emailPattern = /("[a-zA-Z}{2,8}$)|("[a-zA-Z)}2,7}[0-91%)I("[a-zA-ZK2,6}[0-91(2}$)/:
var emailAddress = document.registrationForm.email.value;

if (emailAddress.search(emailPattern) == -1) {
document.getElementById("registration_status").innerHTML =
"You must use a legal Wellesley email address.";
return false;

xE
Jamie Zawinski's warning:

Some people, when confronted with a problem, think "I know, I'll use regular
expressions.” Now they have two problems.
(quoted at end of Sec. 7.7, Dive Into Python)

Regular Language Applications 22-17

Applications of Search/Pattern Matching

o Document/file search
o Antivirus software
- many viruses have a characteristic signature = sequence of bytes

- virus-writers can create polymorphic viruses that
thwart signature-based attacks.

o DNA/protein analysis
- DNA is a 4-character alphabet; proteins a 20-character alphabet

- in practice, don't look for exact matches but want "close” ones;
this uses dynamic programming technology (see C5231).

Regular Language Applications 22-18

Compiler Structure

Abstract
Source Syntax
Program Lexer Tokens Tree (AST) T
— i (a.k.a. Scanner, Parser ChYPE
(character | Tokenizer) ecker
stream) /
Intermediate | Representation
Front End S -
€S235 emantic
() Analysis
Middle
Stages Intermediate | Representation
Global Analysis (cs2b1/
Information €S301) Opftimizer
(Symbol and L
Attribute Tabl
ribute Tables) Intermediate 1Represem‘aﬁon
Back End Code
(used by all phases
of the compiler) (€s301) Generafor

Machine codei or byte code

Regular Language Applications 22-19

Front End Example

if (num > 0 && num <= top) { // Is num in range-?
return c*num

} else {return 0;} ‘ Lexer (ignores whitespace, comments)
a2 1[] [nudd [5] [o] [se] [pur] [<=] [torl D] [[returd [d [[nod] [
’else‘]return\ @ E ‘ Parser (creates AST)

logical

num 0 num top Regular Language Applications 22-20

Lexical Analysis Slip.lex Definitions and Rules

alpha=[a-zA-Z];
. alphaNumUnd=[a-zA-Z0-9_];
Lexical analysis = breaking programs into tokens, the first stage digit=[0-9]; Definitions
of a compiler. whitespace=[\ \t\nl, etinition
any=["1;
The structure of tokens can be specified by regular expressions. *'/.%, H String matched by
. . . "print" => (PRINT); / regular expression —
Example: the ML-Lex tool can automatically derive a lexical {alpha){alphaNumUnd}* => (ID(yytext)):
analyzer from a .lex file --- a description of tokens specified {digit}* => (INT(pluck(Int.fromString(yytext))));
by regular expressions. "+ => (OP(Add)):
" => (OP(Sub));
We will spend an entire lecture on lexing later this semester. " 2> (OP(Mul)); Remove SOME from
/" => (OP(Div)); option type.
"(" => (LPAREN);
“)" => (RPAREN); ~— Rules
" => (COMMAY); Discard current token
";" => (SEMI), and continue lexing
o (GETS): ¥
{whitespace} => (lex());
{any} => ((* Signal a failure exception when encounter unexpected character.
A more flexible implementation might raise a more refined
exception that could be handled. *)
raise Fail("Slip scanner: unexpected character \"" ™ yytext = "\"") |

Regular Language Applications 22-21 Regular Language Applications 22-22

