
CS235 Languages and Automata

Department of Computer Science
Wellesley College

Regular Language Applications

Friday, October 21, 2011
Reading: Stoughton 3.14, Kozen Chs. 7-8

Regular Language Applications 22-2

Some Applications of Regular Languages

•  Automata = finite state machines (or extensions thereof)
used in many disciplines

•  Efficient string searching

•  Pattern matching with regular expressions
(example: Unix grep utility)

•  Lexical analysis (a.k.a. scanning, tokenizing) in a compiler
(the topic of a lecture later in the course)

Regular Language Applications 22-3

CS240: FSM for Instruction Execution
(Patterson & Hennessey, Computer Organization
and Design)

Regular Language Applications 22-4

CS242: Reliable Data Transmission (sender)
(Kurose & Ross, Computer Networking)

Regular Language Applications 22-5

Markov Models

www.treeage.com/learnMore/MarkovModels.html

Regular Language Applications 22-6

DFAs in User Interfaces

www.treeage.com/learnMore/MarkovModels.html

Example:

Black Diamond Storm headlamp
provides access to all features via
a single button. Can construct a
DFA to explain the interface.

Regular Language Applications 22-7

Naïve String Searching
How to search for abbaba in abbabcabbabbaba?

a b b a b c a b b a b b a b a
a b b a b a
 a b b a b a
 a b b a b a
 a b b a b a
 a b b a b a
 a b b a b a
 a b b a b a
 a b b a b a
 a b b a b a
 a b b a b a

Regular Language Applications 22-8

More Efficient String Searching
Knuth-Morris-Pratt algorithm: construct a DFA for
searched-for string, and use it to do searching.

a b b a b c a b b a b b a b a
a b b a b a
 a b b a b a
 a b b a b a

a b b b a a

b,c a
a

c c b,c

a

c

b

c
How to construct this
DFA automatically?

Regular Language Applications 22-9

Pattern Matching with Regular Expressions
Can turn any regular expression (possibly extended with complement,

intersection, and difference) into a DFA and use it for string
searching.

This idea is used in many systems/languages:
•  grep: Unix utility that searches for lines in files matching a

pattern. (“grep” comes from g/re/p command in the ed editor.)
•  sed: Unix stream editor
•  awk: text-manipulation language
•  Perl: general-purpose programming language with

built-in pattern matching
•  JavaScript: can use regular expressions for form validation.
•  Java, Python, etc.: have support for regular expressions.
•  Emacs: supports regular expression search

Regular Language Applications 22-10

Some grep Patterns
Pattern Matches
c the character ‘c’
. any character except newline
[a-zA-Z0-9] any alphanumeric character
[^d-g] any character except lowercase d,e,f,g
\w synonym for [a-zA-Z0-9]
\W synonym for [^a-zA-Z0-9]
[[:space:]] all whitespace characters
^ beginning of line
$ end of line
\< beginning of word
\> end of word
r1r2 r1 followed by r2, where r1, r2 are reg. exps.
r1|r2 r1 or r2
r* zero or more rs, where r a reg. exp.
r+ one or more rs
r? zero or one rs
r{n} exactly n rs
r{n,} n or more rs
r{n,m} between n and m rs
(r) r (parens for grouping)
\n the substring previously matched by the nth

 parenthesized subexpression of the regular expression
 (not regular in general!)

Regular Language Applications 22-11

Some grep Examples
As a rule, grep patterns should be double-quoted to prevent Linux
from interpreting certain characters specially. (But \ is still a problem,
as we’ll soon see.)

cd ~cs235/public_html
grep "a.*b.*c.*d" words.txt

grep “^a.*b.*c.*d" words.txt

grep "a.*b.*c.*d$" words.txt

grep “^a.*b.*c.*d$" words.txt

grep “^a.*b.*c.*d$" wordlists/*words* (in Scowl final database)

cd ~cs230/archive/cs230_fall04/download/collections
grep “delete[[:space:]]*(Object” *.java

grep "//.*sorted" *.java
Regular Language Applications 22-12

A Powerful Combination: find With grep
Unix’s find command enumerates all files in a directory. E.g

 cd ~cs230/archive/cs230_fall04/download/
 find .

In combination with grep, it can search all these files!

find . | xargs grep “delete[[:space:]]*(Object”

find -exec grep –H “delete[[:space:]]*(Object” {} \;

grep patterns use special metacharacters that (at least in some contexts) do
not stand for themselves:

? + | () { } . * ^ $ \ []

In order to reference the blue characters as themselves, it is necessary to
escape them with a backslash. E.g.,
 $ is a pattern that matches the end of line
 \$ is a pattern that matches the dollar sign character
 \\ is a pattern that matches the backslash character
 \\\\ is a pattern that matches two backslash characters in a row

But the backslash character is also an escape character in Linux! To safely
pass backslashes from Linux to grep, you should* type two backslashes for
every backslash you wish to send to grep. E.g.

 grep “\\$” searches for the dollar sign character
 grep “\\\\” searches for a single backslash

 grep “\\\\\\\\” searches for two backslash characters in a row

*In some, but not all cases, a single backslash will suffice.
Regular Language Applications 22-13

Escapes in Grep Patterns

Regular Language Applications 22-14

What About the Red Metacharacters?
The red metacharacters are handled in a rather confusing way:

? + | () {
In the basic regular expressions used by grep, these characters stand for

themselves and must be escaped to have the metacharacter meaning. E.g.
 grep “(ab)+” searches for the substring “(ab)+”
 grep “(ab){2}” searches for the substring “(ab){2}”
 grep “\\(ab\\)\\+” searches for any nonempty sequence of abs.

 grep “\\(ab\\)\\{2\\}” searches two abs in a row.
 grep “\\(.\\)\\1” searches for two consecutive occurrences of the

 same character
In the extended regular expressions used by grep –E and egrep, these

characters are metacharacters and must be escaped to stand for
themselves.
 egrep “(ab)+” searches for any nonempty sequence of abs.

 egrep “(ab){2}” searches two abs in a row.
 egrep “\\(ab\\)\\+” searches for the substring “(ab)+”
 grep “\\(ab\\)\\{2\\}” searches for the substring “(ab){2}”

 egrep “(.)\\1” searches for two consecutive occurrences of the
 same character

Moral of the story: use egrep instead of grep!

Regular Language Applications 22-15

egrep Examples
cd ~cs235/public_html /wordlists

egrep “(ab){2}" *words*

egrep “(a.*b){2}" *words*

egrep “(a.*b.*){2}" *words*

egrep “(a.*b)\\1" *words*

egrep “(a.*b).*\\1" *words*

egrep “(a.+b).*\\1" *words*

egrep “(a.+a).*\\1" *words*

egrep “(....)\\1" *words*

egrep “(....).*\\1" *words*

egrep “(..).*(..).*\\2.*\\1" *words*

egrep “^(.)(.)(.).*\\3\\2\\1$" *words*
Regular Language Applications 22-16

More Practical Examples
1.  Write an egrep regular expression that matches only well-formed

short FirstClass usernames (e.g., fturbak, gdome, etc.)

Such usernames consist of at least 2 and at most 8 characters and
are sequences of lowercase letters followed by at most 2 digits.

2.  Write an egrep regular expression that matches only well-formed
email address of the form username@server.domain, where
•  username is any sequence of letters, numbers, underscores, and dots

that begins with a letter;

•  Server is any sequence of letters and numbers that begins with a letter;

•  Domain is one of com, edu, or gov.

Regular Language Applications 22-17

Regexp Support in Programming Languages
Many popular programming languages (Java, JavaScript, Python, Perl, etc.) have
built-in or library support for regular expressions.

E.g. Dive Into Python chapter on regular expressions:

http://diveintopython.nfshost.com/regular_expressions

Javascript example (Tanner’10 photo upload site):

function validRegistration() {
 var emailPattern = /(^[a-zA-Z]{2,8}$)|(^[a-zA-Z]{2,7}[0-9]$)|(^[a-zA-Z]{2,6}[0-9]{2}$)/;
 var emailAddress = document.registrationForm.email.value;
…
if (emailAddress.search(emailPattern) == -1) {
 document.getElementById("registration_status").innerHTML =
 "You must use a legal Wellesley email address.";
 return false;
 } …
}

Jamie Zawinski’s warning:
Some people, when confronted with a problem, think “I know, I'll use regular
expressions.” Now they have two problems.
(quoted at end of Sec. 7.7, Dive Into Python)

Regular Language Applications 22-18

Applications of Search/Pattern Matching
o  Document/file search

o  Antivirus software

 - many viruses have a characteristic signature = sequence of bytes

 - virus-writers can create polymorphic viruses that
 thwart signature-based attacks.

o  DNA/protein analysis

 - DNA is a 4-character alphabet; proteins a 20-character alphabet

 - in practice, don’t look for exact matches but want “close” ones;
 this uses dynamic programming technology (see CS231).

Regular Language Applications 22-19

Compiler Structure

 Lexer
(a.k.a. Scanner,
 Tokenizer)!

Source
Program!

(character
stream)!

Parser!
Tokens! Type

Checker!

Abstract
Syntax

Tree (AST) !

Optimizer!

Intermediate Representation!

Code
Generator!

Machine code or byte code!

Global Analysis
Information
(Symbol and

Attribute Tables)!

(used by all phases
of the compiler)!

Intermediate Representation!

Semantic
 Analysis!

Intermediate Representation!

Front End
 (CS235)

Back End
 (CS301)

 Middle
 Stages
(CS251/
 CS301)

Regular Language Applications 22-20

Front End Example
if (num > 0 && num <= top) { // Is num in range?
 return c*num
} else {return 0;}

if (num > 0 && num <= top) { return c * num }

else { return 0 ; }

conditional

return

intlit

return

times

 logical
operator and

varref intlit

relational
 operator

greater less-or-
 equal

relational
 operator

arithmetic
 operator

varref varref
varref varref 0

c num
0 num num top

Lexer (ignores whitespace, comments)

Parser (creates AST)

Regular Language Applications 22-21

Lexical Analysis
Lexical analysis = breaking programs into tokens, the first stage

of a compiler.

The structure of tokens can be specified by regular expressions.

Example: the ML-Lex tool can automatically derive a lexical
analyzer from a .lex file --- a description of tokens specified
by regular expressions.

We will spend an entire lecture on lexing later this semester.

Regular Language Applications 22-22

Slip.lex Definitions and Rules
alpha=[a-zA-Z];
alphaNumUnd=[a-zA-Z0-9_];
digit=[0-9];
whitespace=[\ \t\n];
any= [^];
%%
"print" => (PRINT);
{alpha}{alphaNumUnd}* => (ID(yytext));
{digit}+ => (INT(pluck(Int.fromString(yytext))));
"+" => (OP(Add));
"-" => (OP(Sub));
"*" => (OP(Mul));
"/" => (OP(Div));
"(" => (LPAREN);
")" => (RPAREN);
"," => (COMMA);
";" => (SEMI);
":=" => (GETS);
{whitespace} => (lex());
{any} => ((* Signal a failure exception when encounter unexpected character.
 A more flexible implementation might raise a more refined
 exception that could be handled. *)
 raise Fail(”Slip scanner: unexpected character \"" ^ yytext ^ "\"“)!

Definitions

Rules

String matched by
regular expression

Discard current token
and continue lexing

Remove SOME from
option type.

