
CS235 Languages and Automata

Department of Computer Science
Wellesley College

Predictive Parsing

Wednesday, November 30, and Friday, December 2, 2011

How to Construct Recursive-Descent Parsers

 Predictive Parsing 36-2

Goals of This Lecture
o  Introduce predictive parsers, efficient parsers for certain

grammars in reading the first token (or first few tokens)
of input is sufficient for determining which production to apply.

o  Show how predictive parsers can be implemented by a
recursive descent parser in your favorite programming language.

o  Show how to construct a predictive parsing table, which determines
whether a grammar is amenable to predictive parsing.

o  Study some techniques for transforming nonpredictive grammars
into predictive ones, including removing ambiguity and
left-recursion removal.

o  Learn how to use SML’s sum-of-product datatypes to represent
tokens and parse trees.

o  Learn the distinction between concrete and abstract syntax.

 Predictive Parsing 36-3

Main Example: Intexp
As our main example, we’ll use a simple integer expression
language that we’ll call Intexp.

The abstract syntax, or logical structure, of Intexp is described
by these SML datatypes:

datatype pgm = Pgm of exp (* a program is an expression *)

and exp = Int of int (* an expression is either an integer *)
 | BinApp of exp * binop * exp (* or a binary operator application *)

and binop = Add | Sub | Mul | Div (* there are four binary operators *)

We’ll explore several versions of Intexp’s concrete syntax , i.e.,
how programs, expressions, and binary operators are written down.

We’ll also consider several extensions to Intexp.

A Token Data Type for Intexp

datatype binop = Add | Mul | Sub | Div

datatype token = EOF (* special “end of input” marker *)
 | INT of int (* INT (3) is a token, while Int(3) is an expression *)
 | OP of binop
 | LPAREN | RPAREN

((3+4) * (42-17))

- Scanner.stringToTokens "((3+4)*(42-17))";
val it = [LPAREN, LPAREN, INT 3, OP Add, INT 4, RPAREN, OP Mul, LPAREN,
 INT 42, OP Sub, INT 17, RPAREN, RPAREN] : Token.token list!

Sample “program”

SML token list for sample program

token data type definition

 Predictive Parsing 36-4

(* Note: EOF does *not* appear explicitly in the token list, but is implicitly at the end *)

 Predictive Parsing 36-5

Our First Concrete Syntax for Intexp:
Explicitly Parenthesized Operations

P ! E EOF

E ! INT(int) | (E B E)

B ! + | - | * | /

datatype pgm = Pgm of exp
and exp = Int of int
 | BinApp of exp * binop * exp
and binop = Add | Sub | Mul | Div

Productions for
Concrete Grammar

SML Data Types for
Abstract Grammar

 Predictive Parsing 36-6

An Example Intexp Program
((3+4) * (42 – 17))

(INT(3) INT(4) +) *

Chars:

Tokens:

Parse Tree
(Concrete
 Syntax Tree)

- ParserParens.stringToPgm "((3+4)*(42-17))";
val it = Pgm (BinApp (BinApp (Int 3,Add,Int 4),
 Mul,BinApp (Int 42,Sub,Int 17))): AST.pgm

Abstract
Syntax
Tree (AST):

P

E EOF

B

(INT(42) INT(17) -))(

(

INT(3) INT(4) +

)

E

E E B * (

INT(42) INT(17) -

)

E

E E B

Lexer (scanner)

Parser

 Predictive Parsing 36-7

Predictive Parsing For Intexp
P ! E EOF

E ! INT(int) | (E B E)

B ! + | - | * | /

Observe that:

• expressions E must begin with INT(int) or (.

• programs P must begin with an expression (E) and so must
begin with INT(int) or (.

• binops B must begin with +, -, *, or /.

 Predictive Parsing 36-8

Predictive Parsing Table for Intexp

INT(i) (OP(b)) EOF
P P ! E EOF P ! E EOF
E E ! INT(num) E ! (E B E)

B B ! OP(b)

Can summarize observations on previous slide with a
predictive parsing table of variables x tokens in which
at most one production is valid per entry.

Empty slots in the table indicate parsing errors.

 Predictive Parsing 36-9

Recursive Descent Parsing
From a predictive parsing table, it is possible to construct
a recursive descent parser that parses tokens according
to productions in the table.

Such a parser can “eat” (consume) or “peek” (look at without
consuming) the next token.

For each variable X in the grammar, the parser has a function,
eatX, that is responsible for consuming tokens matched by
the RHS of a production for X and returning an abstract syntax
tree for the consumed tokens. Since the RHS of a production
may contain other variables, the eat… functions can call each
other recursively.

We will now study the SML code for a recursive descent parser
for Intexp.

 Predictive Parsing 36-10

Intexp Parser: Scanner Functions
(* We assume the existence of the following token functions,
 whose implementation details we will *not* study. *)

val initScanner : string -> unit
(* Initialize scanner from a string, creating implicit token stream *)

val nextToken : unit -> token
(* Remove and return next token from implicit token stream *)

val peekToken: unit -> token
 (* Return next token from implicit token stream without removing it *)

 Predictive Parsing 36-11

Intexp Parsing Functions
(* Collection of mutually recursive functions for recursive descent parsing *)
fun eatPgm () = … (* : unit -> pgm. Consume all program tokens and return pgm *)
and eatExp () = … (* : unit -> exp. Consume expression tokens and return exp*)
and eatBinop () = … (* : unit -> binop. Consume binop token and return binop *)
and eat token = (* token -> unit. Consume next token and succeed without
 complaint if it’s equal to the given token.
 Otherwise complain w/error. *)
 let val token' = nextToken()
 in if token = token' then ()
 else raise Fail ("Unexpected token: wanted " ^ (Token.toString token)
 ^ " but got " ^ (Token.toString token'))
 end

fun stringToExp str = (initScanner(str); eatExp()) (* Parse string into exp *)
fun stringToPgm str = (initScanner(str); eatPgm()) (* Parse string into pgm *)

 Predictive Parsing 36-12

Intexp: Parsing Programs and Binops
 fun eatPgm () =
 (* : unit -> pgm. Consume all program tokens and return pgm *)
 let val body = eatExp()
 val _ = eat EOF
 in Pgm(body)
 end

and eatExp () = (* see next slide *)

and eatBinop () =
 (* : unit -> binop. Consume binop token and return binop *)
 let val token = nextToken()
 in case token of
 OP(binop) => binop
 | _ => raise Fail ("Expect a binop token but got: "
 ^ (Token.toString token))
 end

 Predictive Parsing 36-13

Intexp: Parsing Expressions
and eatExp () =
 (* : unit -> exp. Consume expression tokens and return exp*)
 let val token = nextToken()
 in case token of
 INT(i) => Int(i)

 | LPAREN => let val exp1 = eatExp()
 val bin = eatBinop()

 val exp2 = eatExp()
 val _ = eat RPAREN
 in BinApp(exp1,bin,exp2)
 end

 | _ => raise Fail ("Unexpected token begins exp: "
 ^ (Token.toString token))
 end

 Predictive Parsing 36-14

An Extended Language: SLiP--

P ! S EOF

S ! ID(str) := E | print E | begin SL end

SL ! % | S ; SL

E ! ID(str) | INT(int) | (E B E)

B ! + | - | * | /

datatype pgm = Pgm of stm
and stm = Assign of string * exp
 | Print of exp
 | Seq of stm list
and exp = Id of string
 | Int of int
 | BinApp of exp * binop * exp
and binop = Add | Sub | Mul | Div

Productions for
Concrete Grammar

SML Data Types for
Abstract Grammar

SLiP-- is a subset of Appel’s straight-line programming language (SLiP).

 Predictive Parsing 36-15

An Example SLiP-- Program
begin x := (3+4); print ((x-1)*(x+2)); end

begin ID(“x”) := (INT(3) INT(4) +) ;

print ((ID(“x”) ID(“x”) INT(1) -) (*

INT(2)

+

)) ; end EOF

Chars:

Tokens:

Parse Tree:
(see full tree
 on next slide)

Pgm(Seq [Assign(“x”, BinApp(Int(3),Add,Int(4))),
 Print(BinApp(BinApp(Id(“x”),Sub,Int(1)),
 Mul,
 BinApp(Id(“x”),Add,Int(2))))])

Abstract
Syntax
Tree (AST):

P

S EOF

begin end SL

 Predictive Parsing 36-16

An Example SLiP-- Program
Parse
Tree:

P

S EOF

begin end SL

S ; SL

S ; SL

%

ID(“x”) :=

(

INT(3) INT(4) +

) print

ID(“x”) ID(“x”) INT(1) -

*

INT(2) +

E

E E B E

()E E B

()E E B ()E E B

 Predictive Parsing 36-17

Predictive Parsing For SLiP--
P ! S EOF

S ! ID(str) := E | print E | begin SL end

SL ! % | S ; SL

E ! ID(str) | INT(int) | (E B E)

B ! + | - | * | /

Observe that:

•  expressions E must begin with ID(str), INT(int), or (.

•  statements S must begin with ID(str), print, or begin.

•  statement lists SL must begin with a statement S and so must
 begin with ID(str), print, or begin . They must end with end (a token
 that is not part of the SL tree but one immediately following it).

•  programs P must begin with a statement S and so must begin with
 ID(str) , print , or begin.

 Predictive Parsing 36-18

Predictive Parsing Table for SLiP--

ID(s) INT(i) (OP(b) print begin end
P P !

S EOF
P !

S EOF
P !

S EOF
S S !

ID(str) := E
S !

print E
S !
begin
SL end

SL SL !
S ; SL

SL !
S ; SL

SL !
S ; SL

SL ! %

E E !
ID(str)

E !
INT(num)

E !
(E B E)

B B ! OP(b)

Can summarize observations on previous slide with a
predictive parsing table of variables x tokens in which
at most one production is valid per entry.

Empty slots in the table indicate parsing errors.

 Predictive Parsing 36-19

NULLABLE, FIRST, and FOLLOW
Predictive parsing tables like that for Slip-- are constructed
using the following notions:

Let t range over terminals, V and W range over variables,
! range over terminals " variables,
and # range over sequences of terminals " variables.

•  NULLABLE(#) is true iff # can derive the empty string (%)

•  FIRST(#) is the set of terminals that can begin strings
 derived from #.

•  FOLLOW(V) is the set of terminals that can immediately
 follow V in some derivation.

 Predictive Parsing 36-20

Computing NULLABLE For Variables
A variable V is NULLABLE iff

1. There is a production V ! %

OR

2. There is a production V ! V1…Vn

 and each of V1, … , Vn is NULLABLE

 (Case 1 is really a special case of 2 with n = 0.)

In general, it is necessary to compute an iterative fixed point to
determine nullability of a variable. We’ve seen this already in the
algorithm for converting a CFG to Chomsky Normal Form.

Example (from Appel 3.2) Another example:

X ! a | Y

Y ! % | c

Z ! d | X Y Z

S’ ! S EOF

S ! T | 0S1

T ! % | 10T

 Predictive Parsing 36-21

Computing FIRST
FIRST0 (V) = {} for every variable V
For all i > 0:
• FIRSTi (t) = {t}
• FIRSTi (V) = U {FIRSTi -1 (#) | V ! # is a production for V}
• FIRST(!1 … !j… !n) = U1 ! j ! n {FIRSTi -1 (!j) | !1, …, !j-1 are all nullable}

Again, this is determined by an iterative fixed point computation.
For the following grammars (1) write the FIRSTi equations and (2) for
each var V use them to find the smallest k s.t. FIRSTk (V) = FIRSTk-1 (V).

X ! a | Y

Y ! % | c

Z ! d | X Y Z

S’ ! S EOF

S ! T | 0S1

T ! % | 10T

 Predictive Parsing 36-22

Computing FOLLOW
FOLLOW0 (V) = {} for every variable V
For all i > 0:

FOLLOWi(V) =
 U {FIRST(!j) | W ! #V !1 … !j … !n is a production in the grammar
 and !1, …, !j-1 are all nullable variables}
 U U {FOLLOWi-1(W) | W ! # V!1… !n is a production in the grammar
 and !1, …, !n are all nullable variables}

Again, this is determined by an iterative fixed point computation:
For the following grammars (1) write the FIRSTi equations and (2) for each
var V use them to find the smallest k s.t. FOLLOWk (V) = FOLLOWk-1 (V).

X ! a | Y

Y ! % | c

Z ! d | X Y Z

S’ ! S EOF

S ! T | 0S1

T ! % | 10T

 Predictive Parsing 36-23

Example: Slip--

Calculate NULLABLE, FIRST, and FOLLOW for the
variables in the Slip-- grammar.

P ! S EOF

S ! ID(str) := E | print E | begin SL end

SL ! % | S ; SL

E ! ID(str) | INT(int) | (E B E)

B ! + | - | * | /

 Predictive Parsing 36-24

Constructing Predictive Parsing Tables
A predictive parsing table has rows labeled by variables and
columns labeled by terminals.

To construct a predictive parsing table for a given grammar,
do the following for each production V ! #:
•  For each t in FIRST(#), enter V ! # in row V, column t.
•  If NULLABLE(#), for each t in FOLLOW(V), enter V ! # in row V, column t

ID(s) INT(i) (OP(b) print begin end
P

S

SL

E

B

 Predictive Parsing 36-25

Slip--: Recursive Descent Parser
(* Collection of mutually recursive functions for recursive descent parsing *)
fun eatPgm () = … (* : unit -> pgm. Consume all program tokens and return pgm *)
and eatStm () = … (* : unit -> stm. Consume all statement tokens and return stm *)
and eatStm List() = … (* : unit -> stm list. Consume all tokens for a sequence of
 statements and return stm list *)
and eatExp () = … (* : unit -> exp. Consume expression tokens and return exp*)
and eatBinop () = … (* : unit -> exp. Consume binop token and return binop *)
and eat token = (* token -> unit. Consume next token and succeed without complaint
 if it’s equal to the given token. Otherwise complain w/error. *)
 let val token' = nextToken()
 in if token = token' then ()
 else raise Fail ("Unexpected token: wanted " ^ (Token.toString token)
 ^ " but got " ^ (Token.toString token'))
 end

fun stringToExp str = (initScanner(str); eatExp()) (* Parse string into exp *)
fun stringToStm str = (initScanner(str); eatStm()) (* Parse string into stm *)
fun stringToPgm str = (initScanner(str); eatPgm()) (* Parse string into pgm *)

 Predictive Parsing 36-26

Slip-- Parsing: Top-Level Function Examples
- stringToExp "((1+2)*(3-4))";
val it = BinApp (BinApp (Int 1,Add,Int 2),Mul,BinApp (Int 3,Sub,Int 4)) : exp

- stringToStm "x := (1+2);";
val it = Assign ("x",BinApp (Int 1,Add,Int 2)) : stm

- stringToPgm "begin x := (3+4); print ((x-1)*(x+2)); end";
val it =
 Pgm
 (Seq
 [Assign ("x",BinApp (Int 3,Add,Int 4)),
 Print
 (BinApp (BinApp (Id "x",Sub,Int 1),Mul,BinApp (Id "x",Add,Int 2)))])
 : pgm

 Predictive Parsing 36-27

Slip-- Parsing: Programs and Binops
fun eatPgm () =
 let val body = eatStm()
 val _ = eat EOF
 in Pgm(body)
 end

and eatBinop () =
 let val token = nextToken()
 in case token of
 OP(binop) => binop
 | _ => raise Fail ("Expect a binop token but got: "
 ^ (Token.toString token))
 end

 Predictive Parsing 36-28

Slip-- Parsing: Statements
and eatStm () =
 let val token = nextToken()
 in case token of
 ID(str) => let val _ = eat GETS
 val rhs = eatExp()
 in Assign(str,rhs)
 end
 | PRINT => let val arg = eatExp()
 in Print(arg)
 end
 | BEGIN => let val stms = eatStmList()

 val _ = eat END
 in Seq(stms)

 end
 | _ => raise Fail ("Unexpected token begins stm: "
 ^ (Token.toString token))
 end

 Predictive Parsing 36-29

Slip-- Parsing: Statement Lists

and eatStmList () =
 let val token = peekToken() (* Must peek rather than eat
 (the essence of FOLLOW!) *)
 in case token of
 END => [
]
 | _ => let val stm = eatStm()
 val _ = eat SEMI

 val stms = eatStmList()
 in stm::stms

 end
 end

 Predictive Parsing 36-30

Slip-- Parsing: Expressions
and eatExp () =
 let val token = nextToken()
 in case token of
 ID(str) => Id(str)

 | INT(i) => Int(i)

 | LPAREN => let val exp1 = eatExp()
 val bin = eatBinop()
 val exp2 = eatExp()
 val _ = eat RPAREN

 in BinApp(exp1,bin,exp2)
 end

 | _ => raise Fail ("Unexpected token begins exp: "
 ^ (Token.toString token))
 end

 Predictive Parsing 36-31

More Practice with NULLABLE, FIRST, & FOLLOW

S’ ! S EOF

S ! T | 0S1

T ! % | 10T

0 1 EOF
S’
S
T

Parsing not predictive since some table slots now have
multiple entries!

NULLABLE FIRST FOLLOW
S’
S
T

 Predictive Parsing 36-32

Adding Extra Lookahead

S’ ! S EOF

S ! T | 0S1

T ! % | 10T

0 10 11 1 EOF EOF
S’

S

T

Sometimes predictivity can be re-established by adding
extra lookahead:

 Predictive Parsing 36-33

LL(k) Grammars

An LL(k) grammar is one that has a predictive parsing
table with k symbols of lookahead.

•  The SLiP-- grammar is LL(1).

•  The S’/S/T grammar is LL(2) but not LL(1).

In LL,

•  the first L means the tokens are consumed left-to-right.

•  the second L means that the parse tree is constructed
 in the manner of a leftmost derivation.

 Predictive Parsing 36-34

Expressions with Prefix Syntax

E ! ID(str) | INT(int) | B E E

ID(s) INT(i) OP(b) print begin end

E E ! ID(str) E ! INT(num) E ! B E E

B B ! OP(b)

Suppose we change Intexp/Slip-- expressions to use prefix syntax:

E.g. , * - x 1 + y 2

Parsing is still predictive:

 Predictive Parsing 36-35

Postfix Syntax for Expressions

E ! ID(str) | INT(int) | E E B

ID(s) INT(i) OP(b) print begin end
E E ! ID(str)

E ! E E B

E ! INT(num)

E ! E E B

B B ! OP(b)

Suppose we change Intexp/Slip-- expressions to use postfix syntax:

E.g. , x 1 – y 2 + *

Parsing is no longer predictive since some table slots now have
multiple entries:

Postfix expressions are fundamentally not predictive (not LL(k) for
any k), so there’s nothing we can do to parse them predictively.

It turns out that we can parse them with a shift/reduce parser.
 Predictive Parsing 36-36

Infix Syntax for Expressions

E ! ID(str) | INT(int) | E B E | (E)

ID(s) INT(i) OP(b) (print begin end
E E ! ID(str)

E ! E B E

E ! INT(num)

E ! E B E

E ! (E)

B B ! OP(b)

Suppose we change Slip-- expressions to use infix syntax
without required parens (but with optional ones)

E.g. x - 1 * y + 2

Parsing is no longer predictive:

This is not surprising: this grammar is ambiguous, and
no ambiguous grammar can be uniquely parsed with
any deterministic parsing algorithm.

Predictive Parsing 36-37

Digression: Ambiguity (Lec #24 Review)
A CFG is ambiguous if there is more than one parse tree for
a string that it generates.

S ! %
S ! SS
S ! aSb
S ! bSa

S

S

%

b a

S

S

%

a b

S

S

S

%

b a S

S

%

a b

S

S

S

%

S

S a b S

S

%

b a

S

S

S

%

S

%

S

This is an example of an ambiguous grammar.
The string abba has an infinite number of parse trees!

Here are a few of them:

S

%

S

%

Predictive Parsing 36-38

Ambiguity Can Affect Meaning
Ambiguity can affect the meaning of a phrase in both natural
languages and programming languages.

Here’s are some natural language examples:

 High school principal

 Fruit flies like bananas.

 A woman without her man is nothing.

A classic example in programming languages is arithmetic expressions:

E ! ID(str) | INT(int) | E B E | (E)

B ! + | - | * | /

 Predictive Parsing 36-39

Arithmetic Expressions: Precedence

E

Int(2)

E

E

What does 2 * 3 + 4 mean?

* E

Int(3)

E

Int(4) +

E

Int(4)

E

E

+ E

Int(2)

E

Int(3) *

E ! ID(str) | INT(int) | E B E | (E)

B ! + | - | * | /

B

B

B

B

Predictive Parsing 36-40

Arithmetic Expressions: Associativity

What does 2 - 3 - 4 mean?

E ! ID(str) | INT(int) | E B E | (E)

B ! + | - | * | /

E

Int(2)

E

E

- E

Int(3)

E

Int(4) -

E

Int(4)

E

E

- E

Int(2)

E

Int(3) -

B

B

B

B

Predictive Parsing 36-41

Precedence Levels

Now there is only one parse tree for 2 * 3 + 4. Why? What is it?

E ! T | E + E | E – E Expressions

T ! F | T * T | T / T Terms
F ! ID(str) | INT(int) | (E) Factors

We can transform the grammar to express precedence levels:

Predictive Parsing 36-42

Specifying Left Associativity

Now there is only one parse tree for 2 - 3 - 4. Why? What is it?

How would we specify right associativity?

E ! T | E + T | E – T Expressions

T ! F | T * F | T / F Terms
F ! ID(str) | INT(int) | (E) Factors

We can further transform the grammar to express left associativity.

 Predictive Parsing 36-43

Another Classic Example: Dangling Else
Stm ! if Exp then Stm else Stm
Stm → if Exp then Stm
Stm → … other productions for statements …

There are two parse trees for the following statement.
What are they?

if Exp1 then if Exp2 then Stm1 else Stm2

Predictive Parsing 36-44

Fixing the Dangling Else
Stm ! MaybeElseAfter | NoElseAfter
MaybeElseAfter ! if Exp then MaybeElseAfter else MaybeElseAfter
MaybeElseAfter → … other productions for statements…
NoElseAfter → if Exp then Stm
NoElseAfter → if Exp then MaybeElseAfter else NoElseAfter

Now there is only one parse tree for the following statement.
What is it?

if Exp1 then if Exp2 then Stm1 else Stm2

 Predictive Parsing 36-45

Back to Predictive Parsing:
Removing Ambiguity May not Help

E ! T | E + T | E – T Expressions

T ! F | T * F | T / F Terms
F ! ID(str) | INT(int) | (E) Factors

ID(s) INT(i) OP(b) (print begin end
E E ! T

E ! E + T

E ! E - T

E ! T

E ! E + T

E ! E - T

E ! T

E ! E + T

E ! E - T

T T ! F

T ! T * F

T ! T / F

T ! F

T ! T * F

T ! T / F

T ! F

T ! T * F

T ! T / F
F F ! ID(str) F ! INT(num) F ! (E)

Suppose we use an unambiguous infix grammar for arithmetic:

Parsing is still not predictive due to left recursion in E and T:

 Predictive Parsing 36-46

Left Recursion Removal

E ! T | E + T | E – T

T ! F | T * F | T / F

F ! ID(str) | INT(int) | (E)

Sometimes we can transform a grammar to remove left recursion
(parse trees are transformed correspondingly).

E ! T E’

E’ ! % | + T E’ | - T E’

T ! F T ’

T ’ ! % | * F T ’ | / F T ’

F ! ID(str) | INT(int) | (E)

See Appel 3.2 for a general description of this transformation.
You will use this transformation in PS10.

 Predictive Parsing 36-47

The Transformed Grammar is Predictive!
E ! T E’

E’ ! % | + T E’ | - T E’

T ! F T ’

T’ ! % | * F T ’ | / F T ’

F ! ID(str) | INT(int) | (E)

ID(s) INT(i) + * () ; EOF
E E ! T E’ E ! T E’ E ! T E’

E’ E’ !
+ T E’

E’ ! % E’ ! % E’ ! %

T T ! F T’ T ! F T’ T ! F T’

T’ T’ ! % T’ !
* F T’

T’ ! % T’ ! % T’ ! %

F F ! ID
(str)

F !
INT(num)

F ! (E)

 Predictive Parsing 36-48

Transforming Parse Trees

E

E OP(+) T

F T

OP(*) INT(4) T

F

INT(2)

F

INT(3)

E

T

F

INT(2)

T ’

OP(*) F

INT(3)

T ’

%

E’

OP(+) T E’

%F

INT(4)

T ’

%

The parse tree from the transformed grammar can be transformed
back to the untransformed grammar. (It’s hard to parse linear
sequence of tokens into trees, but it’s easy to transform trees!)
E.g. 2 * 3 + 4

