
N - 1

Building a Better Mousetrap

Sipser: Section 3.2 pages 176 - 182

N - 2

Multitape Turing Machines

Formally, we need only change the transition function to

𝛅: Q × 𝚪k ⟶ Q × 𝚪k × {L, R}k

Tape 1

Tape 2

Tape k

...

q0

h

q3 q2

q1
Finite control

N - 3

Evidence of Turing Robustness

Theorem. Every multitape Turing machine has an equivalent
single tape Turing machine.

Corollary. A language is Turing-recognizable if and only if some
multitape Turing machine recognizes it.

N - 4

Recognizing Composite Numbers

• Let L = { In : n is a composite number }.

• Designing a Turing machine to accept L
would seem to involve factoring n.

• However, if we could guess …

N - 5

Guessing Games

Design a machine M that on input In performs the following steps:

1. Nondeterministically choose two numbers p, q > 1 and
transform the input into #In#Ip#Iq#.

2. Multiplies p by q to obtain #In#Ipq#.

3. Checks the number of I ‘s before and after the middle #
for equality. Accepts if equal, and rejects otherwise.

N - 6

The Guessing Machine

Again, the only difference between this variant and the standard
TM is the transition function: 𝛅: Q × 𝚪 ⟶ P(Q × 𝚪 × {L, R})

I

I I #

N - 7

Guessing Doesn’t Help

Theorem. Every nondeterministic Turing machine has an
equivalent deterministic Turing machine.

N - 8

How Does That Compute?

N - 9

Recursively Enumerable

N - 10

Enumerators

Theorem. A language is Turing-recognizable if and only if some
enumerator enumerates it.

Proof. (⟸) Suppose enumerator E enumerates L.

Define M = “On input w:

Run E. Every time E outputs a string,
compare it with w.

If w ever appears in the output of E, accept.”

N - 11

Recursively Enumerable

Theorem. A language is Turing-recognizable if and only if some
enumerator enumerates it.

Proof. (⇒) Suppose TM M recognizes L. Build a lexicographic
enumerator to generate the list of all possible strings
s1, s2, … over Σ.

N - 12

Recursively Enumerable

Theorem. A language is Turing-recognizable if and only if some
enumerator enumerates it.

Proof. (⇒) Suppose TM M recognizes L. Build a lexicographic
enumerator to generate the list of all possible strings
s1, s2, … over Σ.

Define E = “Ignore input.

Repeat the following for i = 1, 2, 3, …

Run M for i steps on each of s1, s2, …, si.

If any computation accepts, print
corresponding sj.”

N - 13

TM’s Take Their Own Sweet Time

• Recognizers, like enumerators, may take a while to answer
yes, … and even longer to answer no.

• A TM that halts on all inputs is called a decider. A decider
that recognizes a language is said to decide that language.

• Call a language Turing-decidable if some Turing machine
decides it.

N - 14

Recognizable versus Decidable

Theorem. A language is Turing-decidable if and only if both it
and its complement are Turing-recognizable.

Proof. (⇒) By definition.

(⟸) Simulate, in parallel, ML on tape 1 and ML’ on tape 2.

N - 15

The Hailstone Sequence

HailstoneSequence(n)
if (n ≠ 1)

if (n is even)
HailstoneSequence(n/2)

else
HailstoneSequence(3*n+1)

Given an integer n > 0, does this process terminate?

N - 16

Example Sequence, n = 11

11

34

17

52

26

13

40

20

10

5

16

8

4

2

1

N - 17

Hailstone Turing Machine

Let H = { In | n > 0 and the hailstone sequence terminates for n }.

We construct TM M to recognize language H.

M = “On input w:
1. If the input is ℇ, reject.
2. If the input has length 1, accept.
3. If the input has even length, halve its length.
4. If the input has odd length, triple its length and append I.
5. Go to stage 2.”

N - 18

The Simplest Impossible Problem

• Is is unknown whether this process will terminate for all
natural numbers.

• It is unknown whether TM M might loop forever.

