

What is an Algorithm?

Sipser: Section 3.3 pages 182 - 187

- Can a TM ever write the blank symbol \sqcup on its tape?
- Can the tape alphabet Γ of a TM be the same as the input alphabet $\Sigma?$
- Can a TM's head ever be in the same location in two successive steps?
- Can a TM contain just a single state?

 Give the sequence of configurations that the TM on the right enters when started on the input string 00.

Computability

Hilbert's Tenth Problem.

Find a process according to which it can be determined by a finite number of operations whether a given polynomial

 $p(x_1, x_2, ..., x_n)$

has an integral root.

Recipes and Processes

Definition. An *algorithm* is a finite sequence of operations, each chosen from a finite set of well-defined operations, that halts in a finite time.

Church-Turing Thesis

Algorithm

=

Turing Machine

Languages and Problems

Definition. Let $D = \{p \mid p \text{ is a polynomial with an integral root}\}$.

Hilbert's Tenth Problem.

Determine whether D is Turing-decidable.

D = {p | p is a polynomial with integral roots}

M = "The input is a polynomial $p(x_1, x_2, ..., x_n)$.

1. Lexicographically generate integer values for

 $(x_1, x_2, ..., x_n).$

2. Evaluate *p* as each set of values is generated. If at any point the polynomial evaluates to 0, *accept*."

Here We Go Again

Describing Turing Machines

• Formal

- Implementation
 - *M* = "On input string *w*:
 - 1. Sweep across tape, crossing off every other 0.
 - 2. If tape contained one 0, accept.
 - 3. Else, if number of 0's is odd, reject.
 - 4. Return head to left-hand end of tape.
 - 5. Go to step 1.
- High-level

```
repeat until n = 1
exit if n mod 2 ≠ 0
set n = n div 2
```


• Is a TM with a doubly infinite tape (infinite to the left as well as the right) more powerful than an ordinary TM?

 Let a k-PDA be a pushdown automaton that has k stacks. Is a 1-PDA more powerful than a 0-PDA? Is a 2-PDA more powerful than a 1-PDA? Is a 3-PDA more powerful than a 2-PDA?