What is an Algorithm?

Quiz

- Can a TM ever write the blank symbol \sqcup on its tape?
- Can the tape alphabet Γ of a TM be the same as the input alphabet Σ?
- Can a TM’s head ever be in the same location in two successive steps?
- Can a TM contain just a single state?

Give the sequence of configurations that the TM on the right enters when started on the input string 00.

Computability

Hilbert’s Tenth Problem.

Find a process according to which it can be determined by a finite number of operations whether a given polynomial

$$p(x_1, x_2, \ldots, x_n)$$

has an integral root.

Recipes and Processes

Definition. An algorithm is a finite sequence of operations, each chosen from a finite set of well-defined operations, that halts in a finite time.
Church-Turing Thesis

\[
\text{Algorithm} = \text{Turing Machine}
\]

Languages and Problems

Definition. Let \(D = \{ p \mid p \text{ is a polynomial with an integral root} \} \).

Hilbert's Tenth Problem.
Determine whether \(D \) is Turing-decidable.

\[
D = \{ p \mid p \text{ is a polynomial with integral roots} \}
\]

\(M = \) "The input is a polynomial \(p(x_1, x_2, \ldots, x_n) \).

1. Lexicographically generate integer values for \((x_1, x_2, \ldots, x_n)\).

2. Evaluate \(p \) as each set of values is generated. If at any point the polynomial evaluates to 0, accept."

Here We Go Again

The Universe of Languages

<table>
<thead>
<tr>
<th>Turing-recognizable</th>
<th>Turing-decidable</th>
<th>Context-free</th>
<th>Regular</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^*b^c^)</td>
<td>(a^b^)</td>
<td>(a^b^)</td>
<td></td>
</tr>
</tbody>
</table>
Describing Turing Machines

- **Formal**

- **Implementation**
 \[M = \text{"On input string } w:\]
 1. Sweep across tape, crossing off every other 0.
 2. If tape contained one 0, accept.
 3. Else, if number of 0's is odd, reject.
 4. Return head to left-hand end of tape.
 5. Go to step 1.

- **High-level**

 repeat until \(n = 1 \)
 exit if \(n \mod 2 \neq 0 \)
 set \(n = n \div 2 \)

Exercises

- Is a TM with a doubly infinite tape (infinite to the left as well as the right) more powerful than an ordinary TM?

- Let a \(k \)-PDA be a pushdown automaton that has \(k \) stacks. Is a 1-PDA more powerful than a 0-PDA? Is a 2-PDA more powerful than a 1-PDA? Is a 3-PDA more powerful than a 2-PDA?