Undecidable Problems About Languages

Sipser: Section 5.1 pages 215 - 226

Clique and Independent Set

CLIQUE = \{<G,k> | G is a graph with a k-clique\}

INDEPENDENT = \{<G,k> | G is a graph containing an independent set of size k\}

CLIQUE reduces to INDEPENDENT
Certified Impossible

\[\text{Theorem.} \quad A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \text{ is undecidable.} \]

\[\text{Definition.} \quad HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \]

The Halting Problem (Again!)

\[\text{Theorem.} \quad HALT_{TM} \text{ is undecidable.} \]

\[\text{Proof Idea.} \quad \text{We know } A_{TM} \text{ is undecidable. We need to reduce one of } HALT_{TM} \text{ or } A_{TM} \text{ to the other.} \]

Which way to go?

HALT_{TM} is undecidable

\[\text{Proof.} \quad \text{Suppose } R \text{ decides } HALT_{TM}. \text{ Define} \]

\[S = \text{"On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ a string:} \]

1. Run TM \(R \) on input \(\langle M, w \rangle \).
2. If \(R \) rejects, then reject.
3. If \(R \) accepts, simulate \(M \) on input \(w \) until it halts.
4. If \(M \) enters its accept state, accept. If \(M \) enters its reject state, reject."
Proof. Given an input $<M, w>$ we construct a machine M_w as follows:

$M_w = "\text{On input } x:\n1. \text{ If } x \neq w, \text{ reject.}\n2. \text{ If } x = w, \text{ run } M \text{ on input } w \text{ and accept if } M \text{ does.}"$

to be continued...

The Proof Continues

Proof continued. Suppose TM R decides E_{TM}. Define

$S = "\text{On input } <M, w>:\n1. \text{ Use the description of } M \text{ and } w \text{ to construct } M_w.\n2. \text{ Run } R \text{ on input } <M_w>.\n3. \text{ If } R \text{ accepts, reject. If } R \text{ rejects, accept.}"

With Power Comes Uncertainty

M accepts w $\quad L(M) = \varnothing$ $\quad L(M_1) = L(M_2)$

Rice's Theorem. Any nontrivial property of the languages recognized by Turing machines is undecidable.
For Example

Definition. \(\text{REGULAR}_{TM} = \{ <M> | M \text{ is a TM and } L(M) \text{ is regular} \} \).

Theorem. \(\text{REGULAR}_{TM} \) is undecidable.

REGULAR\(_{TM}\) is undecidable

Proof. Let \(R \) be a TM that decides \(\text{REGULAR}_{TM} \). Define \(S = \text{"On input } <M, w>\text{:} \)

1. Construct TM \(M_2 = \text{"On input } x\text{:} \)
 1. If \(x \) has the form \(0^n1^n \), accept.
 2. Otherwise, run \(M \) on input \(w \) and accept if \(M \) accepts \(w \).
2. Run \(R \) on input \(<M_2> \).
3. If \(R \) accepts, accept. Otherwise, if \(R \) rejects, reject."