Mapping Reducibility

Theorem. E_{TM} is undecidable.

Proof. Given an input $<M, w>$ we construct a machine M_w that accepts a nonempty language iff M accepts w:

$M_w = \text{"On input } x:\n 1. \text{ If } x \neq w, \text{ reject.}\n 2. \text{ If } x = w, \text{ run } M \text{ on input } w \text{ and accept if } M \text{ does."}$

Suppose TM R decides E_{TM} and establish a contradiction by creating a decider S of A_{TM}:

$S = \text{"On input } <M, w>:\n 1. \text{ Use the description of } M \text{ and } w \text{ to construct } M_w.\n 2. \text{ Run } R \text{ on input } <M_w>.\n 3. \text{ If } R \text{ accepts, reject. If } R \text{ rejects, accept."}$

Computable Functions

Definition. A function $f : \Sigma^* \rightarrow \Sigma^*$ is a computable function if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.

Example. The increment function

$\text{inc}^+: \{1\}^* \rightarrow \{1\}^*$

is Turing computable.
Machine Transformers

\[F = \text{"On input } \langle M \rangle:\]
1. Construct the machine
 \[M_\infty = \text{"On input } x:\]
 1. Run \(M \) on \(x \).
 2. If \(M \) accepts, accept.
 3. If \(M \) rejects, loop.
2. Output \(\langle M_\infty \rangle \)."

Mapping Reducibility

Definition. Language \(A \) is mapping reducible to language \(B \), written \(A \leq_m B \), if there is a computable function \(f: \Sigma^* \rightarrow \Sigma^* \), where for every \(w \),
\[w \in A \iff f(w) \in B. \]

Problem Reduction

Theorem. If \(A \leq_m B \) and \(B \) is decidable, then \(A \) is decidable.

The Contapositive is Also Useful

Theorem. If \(A \leq_m B \) and \(B \) is decidable, then \(A \) is decidable.

Corollary. If \(A \leq_m B \) and \(A \) is undecidable, then \(B \) is undecidable.
Similarly ...

Theorem. If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

Corollary. If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

A Familiar Mapping Reduction

$A_{TM} = \{ <M, w> | M \text{ is a TM and } M \text{ accepts } w \}$

\leq_m

$HALT_{TM} = \{ <M, w> | M \text{ is a TM and } M \text{ halts on input } w \}$

Solvable, Half-Solvable, Out-to-Lunch

$F = \text{"On input } <M, w>:\$

1. Construct the machine $M_{\infty} = \text{"On input } x:"
 1. Run M on x.
 2. If M accepts, accept.
 3. If M rejects, loop.
2. Output $<M_{\infty}, w>.$"
Theorem. \(EQ_{TM} \) is neither Turing-recognizable nor co-Turing-recognizable.

Proof. We show \(A_{TM} \leq_m EQ_{TM} \). Why does this help?

\(EQ_{TM} \) is not Turing-recognizable.

Theorem. \(EQ_{TM} \) is neither Turing-recognizable nor co-Turing-recognizable.

Proof. We show \(A_{TM} \leq_m EQ_{TM} \).

Theorem. \(EQ_{TM} \) is neither Turing-recognizable nor co-Turing-recognizable.

Proof. We show \(A_{TM} \leq_m EQ_{TM} \). Why does this help?
Exercises

1. Show that A_{TM} is not mapping reducible to E_{TM}.
 (Hint: Use the fact that A_{TM} is not Turing-recognizable whereas E_{TM} is Turing-recognizable.)

2. Show that if P is Turing-recognizable and $P \leq_m \overline{P}$, then P is decidable.