Mapping Reducibility

Definition. Language \(A \) is mapping reducible to language \(B \), written \(A \leq_m B \), if there is a computable function \(f : \Sigma^* \rightarrow \Sigma^* \), where for every \(w \),

\[
 w \in A \Leftrightarrow f(w) \in B.
\]

\[E_{TM} = \{ <M> \mid M \text{ is a TM} \& L(M) = \emptyset \} \]

Theorem. \(E_{TM} \) is undecidable.

Proof. Given an input \(<M, w> \) we construct a machine \(M_w \) that accepts a nonempty language iff \(M \) accepts \(w \):

\[
 M_w = \text{"On input } x:\n \begin{align*}
 1. \text{ If } x \neq w, \text{ reject.} \\
 2. \text{ If } x = w, \text{ run } M \text{ on input } w \text{ and accept if } M \text{ does."
 }
 \end{align*}
\]

Suppose TM \(R \) decides \(E_{TM} \) and establish a contradiction by creating a decider \(S \) of \(A_{TM} \):

\[
 S = \text{"On input } <M, w>:\n \begin{align*}
 1. \text{ Use the description of } M \text{ and } w \text{ to construct } M_w. \\
 2. \text{ Run } R \text{ on input } <M_w>. \\
 3. \text{ If } R \text{ accepts, reject. If } R \text{ rejects, accept."
 }
 \end{align*}
\]

Problem Reduction

Theorem. If \(A \leq_m B \) and \(B \) is decidable, then \(A \) is decidable.
The Contapositive is Also Useful

Theorem. If $A \leq_m B$ and B is decidable, then A is decidable.

Corollary. If $A \leq_m B$ and A is undecidable, then B is undecidable.

Similarly...

Theorem. If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

Corollary. If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

A Familiar Mapping Reduction

$A_{TM} = \{ <M, w> | M$ is a TM and M accepts $w \}$
\leq_m
$HALT_{TM} = \{ <M, w> | M$ is a TM and M halts on input $w \}$

$A_{TM} \leq_m HALT_{TM}$

$F = \text{“On input } <M, w>:\text{“}$

1. Construct the machine $M_w = \text{“On input } x:$
 - Run M on $x.$
 - If M accepts, accept.
 - If M rejects, loop.
2. Output $<M_w, w>.$
Solvable, Half-Solvable, Out-to-Lunch

Theorem. The set $EQ_{TM} = \{ <M_1, M_2> \mid L(M_1) = L(M_2) \}$ is Out-to-Lunch.

Proof. We show $A_{TM} \leq_m EQ_{TM}$. Why does this help?

1. Construct the following two machines:
 - $M_1 = "\text{On any input:}"
 - 1. Accept."
 - $M_2 = "\text{On any input } x:
 - 1. Ignore } x \text{ and run } M \text{ on } w.
 - If it accepts, accept."

2. Output $<M_1, M_2>$."

EQ_{TM} is not Turing-recognizable

Theorem. The set EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable.

Proof. We show $A_{TM} \leq_m \overline{EQ_{TM}}$.

- $G =$ "On input $<M, w>$:
 1. Construct the following two machines:
 - $M_1 =$ "On any input:
 - 1. Accept."
 - $M_2 =$ "On any input x:
 - 1. Ignore x and run M on w.
 - If it accepts, accept."
 2. Output $<M_1, M_2>$."
F = "On input <M, w>:
1. Construct the following two machines:
 M₁ = "On any input:
 1. Reject."
 M₂ = "On any input x:
 1. Ignore x and run M on w.
 If it accepts, accept."
2. Output <M₁, M₂>.

Exercises

1. Show that A_TM is not mapping reducible to E_TM. (Hint: Use the fact that A_TM is not Turing-recognizable whereas \overline{E_TM} is Turing-recognizable.)

2. Show that if P is Turing-recognizable and P ≤_m \overline{P}, then P is decidable.