

Finite State Machines

Sipser: Chapter 0 pages 1 - 28, Section 1.1 pages 31 - 40

Course Information

A finite automaton is a 5-tuple ($Q, \Sigma, \delta, q_0, F$), where

- 1. Q is a finite set called the states,
- 2. Σ is a finite set called the **alphabet**,
- 3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,
- 4. $q_0 \in Q$ is the start state, and
- 5. $F \subseteq Q$ is the set of accept states.

The set of all strings accepted by a finite automaton M is called the language of machine M, and is written L(M).

We say that M recognizes the language L(M).

Automata Computation

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton and let $w = w_1 w_2 \cdots w_n$ be a string where each w_i is a member of the alphabet Σ . Then M accepts w if a sequence of states r_0, r_1, \dots, r_n in Q exists with three conditions:

1.
$$r_0 = q_0$$
,
2. $\delta(r_i, w_{i+1}) = r_{i+1}$, for $i = 0, ..., n-1$, and
3. $r_n \in F$.

Regular Languages

A language is called a **regular language** if some finite automaton recognizes it.

 $L(M_1) = \{w \mid w \text{ contains at least one 1 and} \\ an even number of 0s follow the last 1 \}$

 $L(M_4) = \{w \mid w \text{ is a string over } \{a, b\} \text{ that starts}$ and ends with the same symbol }

Designing Your Own

Is $\{w \mid w \text{ is a string of 0s and 1s containing an even number of 0s } a regular language?$

How about $\{w \mid w \text{ is a string of } as and bs containing the substring aba} ?$