The Classes P and NP

Polynomial Time

Tractable Problems

<table>
<thead>
<tr>
<th>Size n</th>
<th>Time complexity function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>n^2</td>
</tr>
<tr>
<td></td>
<td>n^3</td>
</tr>
<tr>
<td></td>
<td>n^5</td>
</tr>
<tr>
<td></td>
<td>2^n</td>
</tr>
<tr>
<td></td>
<td>3^n</td>
</tr>
</tbody>
</table>

Polynomially Equivalent Models
Graph Theory

Definition. \(\text{PATH} = \{ \langle G, s, t \rangle \mid \exists \text{ a directed path from } s \text{ to } t \text{ in } G \} \)

PATH \(\in \mathbb{P} \)

\(M = \) "On input \(\langle G, s, t \rangle \):
1. Place a mark on node \(s \).
2. Repeat until no additional nodes are marked.
3. Scan all edges of \(G \). If \((a, b) \) found from marked node to unmarked node, mark \(b \).
4. If \(t \) is marked, accept. Otherwise, reject."

Hamiltonian Paths

Definition. \(\text{HAMPATH} = \{ \langle G, s, t \rangle \mid \exists \text{ a Hamiltonian path from } s \text{ to } t \} \)

Checking for Hamiltonian Paths

\(E = \) "On input \(\langle G, s, t \rangle \):
1. Generate all orderings, \(p_1, p_2, \ldots, p_m \) of the nodes in \(G \).
2. Check whether \(s = p_1 \) and \(t = p_m \).
3. For each \(i = 1 \) to \(n-1 \), check whether \((p_i, p_{i+1}) \) is an edge in \(G \). If any are not, reject. Otherwise, accept."
Guessing a Solution

\[N = \text{"On input } \langle G, s, t \rangle:\]
1. Guess an ordering, \(p_1, p_2, \ldots, p_n \), of the nodes in \(G \).
2. Check whether \(s = p_1 \) and \(t = p_n \).
3. For each \(i = 1 \) to \(n-1 \), check whether \((p_i, p_{i+1})\) is an edge in \(G \). If any are not, reject. Otherwise, accept.

The Class NP

\textbf{Definition.} \ NTIME(\(t(n) \)) = \{ L \mid L \text{ is decided in } O(t(n)) \text{ time by an NTM} \}.

\textbf{Corollary.} \ NP = \bigcup_k \ NTIME(n^k).

Nondeterministic Time Complexity

\textbf{Definition.} \ Let \(N \) be a NTM. The \textit{running time} of \(N \) is a function \(f : \mathbb{N} \to \mathbb{N} \), where \(f(n) \) is the maximum number of steps that \(N \) uses on any branch of its computation on any input of length \(n \).

Certificates

NP is the class of languages that have polynomial time verifiers.

What is a certificate for \textit{PATH}?
What is a certificate for \textit{HAMPATH}?
What is a certificate for \textit{COMPOSITE}?
What is a certificate for \textit{HAMPATH}?
The Classes P and NP

P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq \text{EXPTIME}

Proper containment

P = NP?

Exercises

Let CONNECTED = \{ \langle G \rangle \mid G \text{ is a connected undirected graph} \}.
Is CONNECTED in NP? Is CONNECTED in P?

A triangle in an undirected graph is a 3-clique.
Let TRIANGLE = \{ \langle G \rangle \mid G \text{ contains a triangle} \}.
Is TRIANGLE in NP? Is TRIANGLE in P?

Call the graphs G and H isomorphic if the nodes of G may be reordered so that it is identical to H.
Let ISO = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are isomorphic graphs} \}.
Is ISO in NP? Is ISO in P?