The Hardest Problem In The World

The Classes P and NP?

A Famous NP Problem

CNF satisfiability (CNFSat): given a Boolean formula B in conjunctive normal form (CNF), is there a truth assignment that satisfies B?

$$(x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (x_1 \lor \overline{x_2})$$

A Graph Theory NP Problem

CLIQUE: given a graph $G = (V, E)$ and an integer k, does G contain C_k as a subgraph?
Which Problem is Harder?

Polynomial Time Reduction

Definition. Let \(A \subseteq \Sigma \) and \(B \subseteq \Gamma \) be decision problems.

We write \(A \leq_p B \) and say that \(A \) reduces to \(B \) in polynomial time if there is a polynomial time computable function \(\sigma : \Sigma \rightarrow \Gamma \) such that for all problem instances \(x \in \Sigma \),

\[
x \in A \iff \sigma(x) \in B.
\]

CNF \leq_p Clique

- Given a Boolean formula \(B \) in CNF, we show how to construct a graph \(G \) and an integer \(k \) such that \(G \) has a clique of size \(k \) iff \(B \) is satisfiable.

- Given

\[
(x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (x_1 \lor x_2)
\]

the construction would yield

CNF \leq_p Clique

- Given a Boolean formula \(B \) in CNF, we show how to construct a graph \(G \) and an integer \(k \) such that \(G \) has a clique of size \(k \) iff \(B \) is satisfiable.

- Given

\[
(x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor x_3)
\]

the construction would yield
Intuitively, A is No Harder than B

Theorem. If $A \leq_p B$ and B has a polynomial time algorithm, then so does A.

Proof.

![Diagram of reduction algorithm](image)

Algorithm for deciding A

$R(x)$

Algorithm for deciding B

"YES"

"NO"

NP’s Hardest Problems

Definition. The set $A \in \text{NP}$ is NP-complete if for all $B \in \text{NP}$, $B \leq_p A$.

![Diagram of NP's hardest problems](image)

P = NP?

Theorem. If A is NP-complete, then $A \in \text{P}$ if and only if $\text{P} = \text{NP}$.

![Diagram of P = NP?](image)

Cook’s Theorem

Theorem. If $A \in \text{NP}$ then $A \leq_p \text{CNFSat}$.

![Diagram of Cook’s Theorem](image)
So What?

• The existence of one "natural" NP-complete problem is an interesting fact for the computer scientist.

• The existence of thousands of "natural" NP-complete problems is an essential fact for the computer scientist.

Clique is NP-Complete

![Diagram of Clique is NP-Complete]

NP-Complete Problems

DOUBLE-SAT = \{ \langle \varphi \rangle \mid \varphi \text{ has at least two satisfying assignments} \}

Show **DOUBLE-SAT** is in NP. Show **DOUBLE-SAT** is NP-complete. HINT: Reduce **SAT** to **DOUBLE-SAT**. Create a new Boolean formula \(\varphi' \) based on Boolean formula \(\varphi \) such that \(\varphi \) is in **SAT** iff \(\varphi' \) is in **DOUBLE-SAT**.

HALF-CLIQUE = \{ \langle G \rangle \mid G \text{ has a clique of size } m/2 \text{ where } m \text{ is the number of nodes in } G \}

Show **HALF-CLIQUE** is in NP. Show **HALF-CLIQUE** is NP-complete. HINT: Reduce **CLIQUE** to **HALF-CLIQUE**. Create a graph \(H \) such that \(\langle G,k \rangle \) is in **CLIQUE** iff \(\langle H \rangle \) is in **HALF-CLIQUE**. Consider the three cases when \(k = m/2 \), \(k > m/2 \), and \(k < m/2 \).