

The Hardest Problem In The World

Sipser: Section 7.4 pages 299 – 311

The Classes P and NP?

A Famous NP Problem

CNF satisfiability (CNFSat): given a Boolean formula B in conjunctive normal form (CNF), is there a truth assignment that satisfies B?

$(x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (x_1 \lor \overline{x_2})$

A Graph Theory NP Problem

CLIQUE: given a graph G = (V, E) and an integer k, does G contain C_k as a subgraph?

Which Problem is Harder?

Polynomial Time Reduction

Definition. Let $A \subseteq \Sigma$ and $B \subseteq \Gamma$ be decision problems.

We write $A \leq_p B$ and say that A reduces to B in polynomial time if there is a polynomial time computable function σ : $\Sigma \rightarrow \Gamma$ such that for all problem instances $x \in \Sigma$,

$x \in A$ iff $\sigma(x) \in B$.

CNF ≤_p Clique

- Given a Boolean formula B in CNF, we show how to construct a graph G and an integer k such that G has a clique of size k iff B is satisfiable.
- Given

$$\begin{array}{ccc} C_1 & C_2 & C_3 \\ (x_1 \lor x_2) \land \overline{(x_1} \lor \overline{x_2}) \land (x_1 \lor \overline{x_2}) \end{array}$$

the construction would yield

$CNF \leq_p Clique$

- Given a Boolean formula B in CNF, we show how to construct a graph G and an integer k such that G has a clique of size k iff B is satisfiable.
- Given

$$(x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

the construction would yield

V - 8

Intuitively, A is No Harder than B

Theorem. If $A \leq_p B$ and B has a polynomial time algorithm, then so does A.

Proof.

NP's Hardest Problems

Definition. The set $A \in NP$ is *NP-complete* if for all $B \in NP$, $B \leq_p A$.

Theorem. If A is NP-complete, then $A \in P$ if and only if P = NP.

Cook's Theorem

Theorem. If $A \in NP$ then $A \leq_p CNFS$ at.

- The existence of one "natural" NP-complete problem is an interesting fact for the computer scientist.
- The existence of thousands of "natural" NP-complete problems is an essential fact for the computer scientist.

Clique is NP-Complete

NP-Complete Problems

DOUBLE-SAT = { $\langle \phi \rangle$ | ϕ has at least two satisfying assignments }

Show DOUBLE-SAT is in NP. Show DOUBLE-SAT is NP-complete. HINT: Reduce SAT to DOUBLE-SAT. Create a new Boolean formula φ' based on Boolean formula φ such that φ is in SAT iff φ' is in DOUBLE-SAT.

 $HALF-CLIQUE = \{ \langle G \rangle \mid G \}$ has a clique of size m/2 where m is the number of nodes in $G \}$

Show HALF-CLIQUE is in NP. Show HALF-CLIQUE is NP-complete. HINT: Reduce CLIQUE to HALF-CLIQUE. Create a graph H such that $\langle G, k \rangle$ is in CLIQUE iff $\langle H \rangle$ is in HALF-CLIQUE. Consider the three cases when k=m/2, k > m/2, and k < m/2.