

The Equivalence of NFAs and DFAs

Unfinished Business

Theorem. A language is regular if and only if it is accepted by a nondeterministic finite automaton.

Proof. (\Rightarrow) Let A be a regular language ...

Sipser: Section 1.2 pages 54 - 58

D - 1

_ _

DFA

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the states,
- 2. Σ is a finite set called the alphabet,
- 3. $\delta : Q \times \Sigma \rightarrow Q$ is the transition function,
- 4. $q_0 \in Q$ is the start state, and
- 5. $F \subseteq Q$ is the set of accept states.

A nondeterministic finite automaton is a 5-tuple (Q, Σ , δ , q_0 , F), where

- 1. Q is a finite set called the states,
- 2. Σ is a finite set called the alphabet,
- 3. $\delta: Q \times \Sigma_{\epsilon} \to P(Q)$ is the transition function,
- 4. $q_0 \in Q$ is the start state, and
- 5. $F \subseteq Q$ is the set of accept states.

Going the Other Way

Theorem. A language is regular if and only if it is accepted by a nondeterministic finite automaton.

Proof. (←) Suppose A is accepted by a nondeterministic finite automaton ...

Equivalent Languages

Definition. Two machines are *equivalent* if they recognize the same language.

Theorem. Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Proof.

D - 5

D - 6

You Only Go Around Once

Input 010110

A Simpler Example

Removing Choice

 $-\underbrace{\left(\begin{array}{c} 1 \\ S_1 \end{array}\right)}_{0}\underbrace{\left(\begin{array}{c} 1 \\ S_2 \end{array}\right)}_{1}$

What About ε Arrows?

Proof.

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA recognizing language A.

We construct a DFA M recognizing A.

1.
$$Q' = P(Q)$$
.

2. For
$$R \in Q'$$
 and $a \in \Sigma$, let $\delta'(R, a) = \bigcup_{r \in R} \delta(r, a)$.

3.
$$q_0' = \{q_0\}.$$

4.
$$F' = \{R \in Q' \mid R \text{ contains an accept state of } N\}$$
.

Modifying Our Construction

Proof.

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA recognizing language A.

We construct a DFA M recognizing A.

1.
$$Q' = P(Q)$$
.

2. For
$$R \in Q'$$
 and $a \in \Sigma$, let $\delta'(R, a) = \bigcup_{r \in R} E(\delta(r, a))$. where $E(R) = \{q \mid q \text{ can be reached from } R \text{ along 0 or more } \epsilon \text{ arrows } \}$.

3.
$$q_0' = E(\{q_0\})$$
.

4.
$$F' = \{R \in Q' \mid R \text{ contains an accept state of } N\}$$
.

Equivalent DFA?

D - 9

D - 10