Nondeterminism
Nondeterminism

- The “computation path” is not unique given an input
- Usually easier to design an nondeterministic automata
- This is not a real model, so why should we care?
Relaxing the Rules

Deterministic Finite Automaton (DFA)

Nondeterministic Finite Automaton (NFA)
How Does That Compute?

Deterministic computation:
- start
- ...
- accept or reject

Nondeterministic computation:
- reject
- ...
- accept
For Example

N_1

Input: 010110
Another Example
Formally

A **nondeterministic finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

- \(Q\) is a finite set called the **states**,
- \(\Sigma\) is a finite set called the **alphabet**,
- \(\delta : Q \times \Sigma \rightarrow \mathcal{P}(Q)\) is the **transition function**, where \(\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}\)
- \(q_0 \in Q\) is the **start state**, and
- \(F \subseteq Q\) is the set of **accept states**.
Nondeterminism is Your Friend

Build an NFA that recognizes the language
\[L = \{ w \mid w \text{ is a string of } a\text{s and } b\text{s that starts and ends with the same symbol and contains at least two symbols} \}. \]
Nondeterminism is Your Friend

Build an NFA that recognizes the language
\[L = \{ w \mid w \text{ is a string of } 0\text{s and } 1\text{s that starts with } 010 \text{ or ends with } 110 \}. \]

Hint: Think of the two “parts” separately and try to glue them using nondeterminism:
- Strings that start with 010
- Strings that end with 110
Nondeterminism is Your Friend

Build an NFA that recognizes the language

\[L = \{ w \mid w \text{ is a string of 0s and 1s that has a 1 in the 3rd position from the end} \}. \]
Nondeterminism is Your Friend

Build an NFA that recognizes the language
\(L = \{ w \mid w \text{ is a string of 0s and 1s that has a 1 in the 3rd position from the end} \} \).

The DFA for this language would look like this!
Closure Properties of Languages Recognized by NFA
Concatenation

Theorem. The class of languages recognized by NFAs is closed under concatenation.

Proof.
Union

Theorem. The class of languages recognized by an NFA is closed under union.

Proof.
Kleene Star

Let A be a language. We define $A^* = \{ x_1 x_2 \ldots x_k \mid k \geq 0 \text{ and each } x_i \in A \}$.

Let $A = \{0, 1\}$, let $B = \{ w \mid w \text{ is a string of 0s and 1s containing an even number of 1s} \}$, and let $C = \{ w \mid w \text{ is a string of 0s and 1s containing an odd number of 1s} \}$.

What are A^*, B^*, and C^*?
Kleene Star

Theorem. The class of languages recognized by NFAs is closed under Kleene star.

Proof.