Regular Expressions

Sipser: Section 1.3 pages 63 - 69

\[(0 \cup 1)0^*\]

\[(0 \cup 1)^*\]

\[\Sigma^*1\]

\[R^*\]

Long Ago in a Place Not Far Away

Old Home Week
Regular Expressions

Definition. Say that \(R \) is a *regular expression* if \(R \) is

1. \(a \) for some \(a \) in the alphabet \(\Sigma \),
2. \(\varepsilon \),
3. \(\emptyset \),
4. \((R_1 \cup R_2) \), where \(R_1 \) and \(R_2 \) are regular expressions,
5. \((R_1 \circ R_2) \), where \(R_1 \) and \(R_2 \) are regular expressions,
6. \((R_1)^* \), where \(R_1 \) is a regular expression.

Working with Regular Expressions

\[
0^*10^* = \{ w | \}
\]

\[
= \{ w | w \text{ is a string of odd length} \}
\]

\[(0 \cup \varepsilon)(1 \cup \varepsilon) = \]

\[(01)^*\emptyset = \]

\[(\ast \cup - \cup \varepsilon)(DD^* \cup DD^* \cup D^* \cup D^* \cup DD^*) = \]

where \(D = \{0,1,2,3,4,5,6,7,8,9\} \)

Identities

Let \(R \) be a regular expression.

- \(R \cup \emptyset = \)
- \(R \circ \varepsilon = \)
- \(R \cup \varepsilon = \)
- \(R \circ \emptyset = \)

Regular Expressions and NFAs

Theorem. A language is regular if and only if some regular expression describes it.

Proof. (\(\Leftarrow \))

1. If \(a \in \Sigma \), then \(a \) is regular.
2. \(\varepsilon \) is regular.
3. \(\emptyset \) is regular.
4. If \(R_1 \) and \(R_2 \) are regular, then \((R_1 \cup R_2) \) is regular.
5. If \(R_1 \) and \(R_2 \) are regular, then \((R_1 \circ R_2) \) is regular.
6. If \(R_1 \) is regular, then \((R_1)^* \) is regular.
Build an NFA that recognizes the regular expression: \((ab \cup a)^*\)

Build an NFA that recognizes the regular expression:
\(a(a \cup b)^a\)