Closure Under Regular Operations (using NFAs)
Regular Languages

- What is the definition of regular languages?
- What is the relationship between DFA and NFA?
- What can we conclude from the above information?

Corollary.
Regular Languages

- What is the definition of regular languages?
 - Languages that can be recognized by some DFA.

- What is the relationship between DFA and NFA?
 - Lemma: Every NFA has an equivalent DFA.

- What can we conclude from the above information?

Corollary. A language is regular if and only if some NFA recognizes it.
Recall Closure Properties

- Consider some operation OP and a language A:
 - If A is a regular language, then OP(A) is also a regular language.
 - Same as “Regular languages are closed under OP”
Recall Closure Properties

- Consider some operation OP and a language A:
 - If A is a regular language, then $OP(A)$ is also a regular language.
 - Same as “Regular languages are closed under OP”

- We have proved that regular languages are closed under
 - Complement
 - Union
 - Intersection
 - Which one are we missing?
Recall Closure Properties

• Consider some operation OP and a language A:
 ○ If A is a regular language, then OP(A) is also a regular language.
 ○ Same as “Regular languages are closed under OP”

• We have proved that regular languages are closed under
 ○ Complement
 ○ Union
 ○ Intersection
 ○ Which one are we missing?

• Good news: NFAs can help us out!
Recall Example from Before

$L = \{ w \mid w \text{ is a string of 0s and 1s that starts with 010 or ends with 110}\}.$
Warm Up: Closure Under Unions Using NFAs

Theorem. The class of regular languages is closed under the union operation.

Proof.
Let’s Be Precise

Theorem. The class of regular languages is closed under the union operation.

Proof. Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize L_1 and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize L_2.

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $L_1 \cup L_2$.

Let’s Be Precise

Theorem. The class of regular languages is closed under the union operation.

Proof. Let \(N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \) recognize \(L_1 \) and \(N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \) recognize \(L_2 \).

Construct \(N = (Q, \Sigma, \delta, q_0, F) \) to recognize \(L_1 \cup L_2 \).

1. \(Q = \{q_0\} \cup Q_1 \cup Q_2 \), for a new state \(q_0 \).
2. \(q_0 \) is the start state of \(N \).
3. \(F = F_1 \cup F_2 \).
4. For any \(q \in Q \) and any \(a \in \Sigma \),
Let’s Be Precise

Theorem. The class of regular languages is closed under the union operation.

Proof. Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize L_1 and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize L_2.

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $L_1 \cup L_2$.
1. $Q = \{q_0\} \cup Q_1 \cup Q_2$, for a new state q_0.
2. q_0 is the start state of N.
3. $F = F_1 \cup F_2$.
4. For any $q \in Q$ and any $a \in \Sigma_e$,
 $$
 \delta(q, a) = \begin{cases}
 \delta_1(q, a) & \text{if } q \in Q_1 \\
 \delta_2(q, a) & \text{if } q \in Q_2 \\
 \{q_1, q_2\} & \text{if } q = q_0 \text{ and } a = \varepsilon \\
 \emptyset & \text{if } q = q_0 \text{ and } a \neq \varepsilon
 \end{cases}
 $$
Closure of Regular Languages Under Concatenation

Recall definition:

Let A and B be languages. We define the concatenation of A and B as

$$A \circ B = \{ xy \mid x \in A \text{ and } y \in B \}.$$
Closure of Regular Languages Under Concatenation

Theorem. The class of regular languages is closed under the concatenation operation.

Proof.
Closure of Regular Languages Under Concatenation

Theorem. The class of regular languages is closed under the concatenation operation.

Proof. Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize L_1 and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize L_2.

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $L_1 \circ L_2$

1. $Q = Q_1 \cup Q_2$.
2. $q_0 = q_1$.
3. $F = F_2$.
4. For any $q \in Q$ and $a \in \Sigma$,

\[
\delta(q, a) = \begin{cases}
\delta_1(q, a) & \text{if } q \in Q_1 \text{ and } q \notin F_1 \\
\delta_1(q, a) & \text{if } q \in F_1 \text{ and } a \neq \varepsilon \\
\delta_1(q, a) \cup \{q_2\} & \text{if } q \in F_1 \text{ and } a = \varepsilon \\
\delta_2(q, a) & \text{if } q \in Q_2
\end{cases}
\]
Kleene Star

Let A be a language. We define $A^* = \{ x_1x_2\ldots x_k \mid k \geq 0 \text{ and each } x_i \in A \}$.

Let $A = \{0, 1\}$, let $B = \{ w \mid w \text{ is a string of 0s and 1s containing an even number of 1s } \}$, and let $C = \{ w \mid w \text{ is a string of 0s and 1s containing an odd number of 1s } \}$.

What are A^*, B^*, and C^*?

A^* = All string of 0s and 1s
B^* = B
C^* = A^* - \{strings of only 0s\}
Closure of Regular Languages Under Kleene Star

Theorem. The class of regular languages is closed under the Kleene star operation.

Proof.
Closure of Regular Languages Under Kleene Star

Theorem. The class of regular languages is closed under the concatenation operation.

Proof. Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize L

Construct $N = (Q, \Sigma, \delta, q_0, F')$ to recognize L^*

1. $Q = \{q_0\} \cup Q_1$.
2. q_0 is the start state of N.
3. $F = \{q_0\} \cup F_1$.
4. For any $q \in Q$ and $a \in \Sigma$, $
 \delta(q, a) = \begin{cases}
 \delta_1(q, a) & \text{if } q \in Q_1 \text{ and } q \notin F_1 \\
 \delta_1(q, a) & \text{if } q \in F_1 \text{ and } a \neq \epsilon \\
 \delta_1(q, a) \cup \{q_1\} & \text{if } q = q_0 \text{ and } a = \epsilon \\
 \{q_1\} & \text{if } q = q_0 \text{ and } a \neq \epsilon \\
 \emptyset & \text{ otherwise}
 \end{cases}$
NFA with a Single Accept State

Theorem. Prove that any NFA can be converted to an equivalent one that has a single accept state.

Proof.