
Problem Set 5 (Updated)
Computer Science 240

Fall 2014
Due: Friday, October 10

Relevant Reading. Patterson and Hennessy §2.5, §2.12-2.15

Problem 1. Which of the codes below are pseudoinstructions in MIPS assembly
language (that is, they are not found directly in the machine language)?
 (i) addi $t0, $t1, 40000
 (ii) beq $s0, 10, Exit
 (iii) sub $t0, $t1, 1

Problem 2. THIS PROBLEM IS NOW OPTIONAL. If any of the following
instruction need editing during the linking phase, describe which instructions may need
editing and why. For those instructions that do not require editing, describe briefly (one
sentence) why not.
Loop:

lui $at, 0xABCD # a
ori $a0, $at, 0xFEDC # b
jal add_link # c

 bne $a0, $v0, Loop # d

Problem 3. (Supporting files are on the course website.)
A singly linked list is a simple recursive data structure. Linked lists are represented by
sequences of nodes or elements, each containing a value and a reference to the next node
in the list. The first node in the list is called the head of the list. The last node in the list
uses a null reference to indicate that there is no next node in the list. The null reference is
traditionally encoded as address 0, the address of a memory location that normal
programs are not allowed to use.

We have provided a simple linked list implementation in Java (written in a style that is
closer to idiomatic C than idiomatic Java programming style). LinkedList.java defines a
simple ListNode representation for building linked lists as well as methods to show lists,
add a value to the end of a list, and insert a value at a specified index in a list.

We have also provided a partial MIPS translation of the provided Java linked list
implementation. LinkedList.asm is a translation of the methods of LinkedList.java to
MIPS code, using a simple memory layout to represent ListNode objects, described in
comments in LinkedList.asm.

Your task is to implement the MIPS insert procedure by translating LinkedList.java’s
insert method. As you learn about the ListNode representation and design your insert
procedure, answer the following questions.

Why must add and insert allocate allocate new ListNode objects on the heap? How could
the program break if these procedures allocated space for ListNodes on the stack?

Assignment 5 Page 2
Computer Science 240

Problem 4.
We discovered a dump of memory contents stored in a file called “very-important-
secrets.dump” in a CS 240 folder on a CS server that stopped working after losing power
on October 2. It seems to show the contents of memory just before the server stopped.
Clearly we need to investigate. We have disassembled part of the memory dump that
appears to encode instructions for the most important procedure in the program that was
running (possibly the keys to the future of computer science!). The disassembled code is:

Address Code Disassembled MIPS

0x003ffffc 0x24100007 addi $16,$0,0x00000007
0x00400000 0x20010003 addi $1,$0,0x00000003
0x00400004 0x0024082a slt $1,$1,$4
0x00400008 0x14200007 bne $1,$0,0x0000000a
0x0040000c 0x2881fffe slti $1,$4,0xfffffffe
0x00400010 0x14200005 bne $1,$0,0x00000008
0x00400014 0x00044080 sll $8,$4,0x00000002
0x00400018 0x3c011001 lui $1,0x00001001
0x0040001c 0x34290008 ori $9,$1,0x00000008
0x00400020 0x01094020 add $8,$8,$9
0x00400024 0x8D080000 lw $8, 0x00000000($8)
0x00400028 0x01000008 jr $8
0x0040002c 0x2402ffff addiu $2,$0,0xffffffff
0x00400030 0x03e00008 jr $31
0x00400034 0x00851020 add $2,$4,$5
0x00400038 0x03e00008 jr $31
0x0040003c 0x02048020 add $16,$16,$4
0x00400040 0x72058002 mul $16,$16,$5
0x00400044 0x02061022 sub $2,$16,$6
0x00400048 0x03e00008 jr $31
0x0040004c 0x70a61002 mul $2,$5,$6
0x00400050 0x03e00008 jr $31

We also found what appears to be part of the static data section of memory:

Address Contents of word at that address

0x10010000 0x0040002C
0x10010004 0x00400034
0x10010008 0x00400040
0x1001000C 0x0040003C
0x10010010 0x00400044
0x10010014 0x0040004C
0x10010018 0x0000001C
0x1001001C 0x00000400

Your job is to reconstruct a single Java method or C function that was likely compiled to
generate this MIPS. Feel free to make up names of variables, etc., as needed.

Assignment 5 Page 3
Computer Science 240

– End of required problems –

Challenge Problem 1. Create LinkedListChallenge.java by converting LinkedList.java
to a more object-oriented (and optionally recursive) style:

• A LinkedListChallenge object should hold an instance variable, head, referring to
the first ListNode in the list.

• Convert methods that manipulate lists to instance methods of
LinkedListChallenge, such that we can call, for example, llc.insert(3,5)
instead of insert(ll,3,5).

Translate your implementation to MIPS using dynamic dispatch.
• Create vtables for LinkedListChallenge and (if needed) ListNode.
• Add a vtable pointer in an object header attached to your in-memory ListNode

representation.
• Implement method calls by dynamic dispatch, inspecting an object’s header to

find its vtable, then indexing in the vtable to lookup the address of the procedure
to run.

