
Memory Allocation
Computer Science 240

Laboratory 12

In this lab, you will be introduced to the final project
for the course, implementing a dynamic memory allocator for
C programs.

The repository contains:

• Makefile – recipes for compiling
• mdriver.c – testing driver
• memlib.h – memory/heap interface
• mm.c – memory allocator implementation (your code will go
here)

• mm.h – memory allocator interface
• traces directory – several trace files (.rep) used for
simulated testing

• the remaining files are testing support files you do not
need to inspect

You will compile with make to produce an executable
called mdriver.bin

There are a variety of ways to run the executable,
described in the assignment (read carefully when you are
ready to start testing your code).

Block Structure
 ... lower addresses up
 HEAP BLOCK
 +--------------------+<-- Start of block
 | header (size|tags) |
 ---+--------------------+<-- Start of payload
 P | | (when allocated)
 A | | Payload address is
 Y | ... | multiple of ALIGNMENT
 L | |
 O | |
 A +--------------------+
 D | footer (size) |
 ---+--------------------+<-- End of block,
 <--start following block

 ... higher addresses down

A word is 8 bytes in our machine.

The initial word of a block is called a block header or a
status word, and stores the size of the block in bytes
(multiple of 16).

 It also stores whether the block is used, and whether the
preceding block is used in the bottom two bits of the
status word (called a tag).

The bottom two bits (tags) are:
 Bit 1 (2^1 == 2): PRED_USED_BIT [For coalescing]
 Bit 0 (2^0 == 1): USED_BIT

Free blocks use the last word as a footer, which stores
SIZE ONLY (no tags).

Heap Block Layout (Implicit Free List)

Heap Initialization in Starter Code

The starter code in mm.c gives you an mm_init function, which
initializes the heap to a single page of memory, which is 4096
bytes, and contains a single large free block, along with the heap
header and heap footer.

The heap header starts at an address which is word-aligned (boundary
of 8). This guarantees that the first block payload also starts at
a word-aligned address.

The heap footer is a special block of size 0 with the USED_BIT set
to 1. This is the only block with this configuration, so marks the
end of the heap.

The first block in the heap is assumed to always have the
PRED_USED_BIT set to 1 (so that you will not try to coalesce memory
below the heap when you free the first block).

Memory Allocation in Starter Code

The starter code in mm.c also gives you a working memory
allocation implementation, although it is incomplete.

Your job will be to write the code to complete it.

When an allocation occurs, the heap is checked to see if
there is a large enough free block available for the
allocation. If there is not a large enough block, the heap
is extended by a page which contains a large new free
block.

When an allocation occurs, the heap is checked to see if
there is a large enough free block available for the
allocation.

If there is not a large enough block, the head is extended
by a page which contains a large new free block.

The starter code does not split when you allocate, and it
does not do anything when you free (it does not free the
block, and does not coalesce as part of the free, either).

You will add code to the allocate function to implement
splitting.

You will also write the mm_free and coalesce functions.

Traces

When learning about the starter code, you will
simulate small traces (which are sequences of freeing
and allocating blocks of various sizes). Results from
the traces help you understand if your code is
working correctly or not.

When testing and debugging, you may find it useful to
write and test your own small traces.

A trace file contains 4 header lines:

1.Suggested heap size (any number, ignored by our
tests).
2.Total number of blocks allocated.
3.Total number of malloc/free events.
4.Weight (any number, ignored by our tests).

Remaining lines after the header give a sequence
of memory management events (either free or
allocate), one per line.

For example, the following example C code would
generate the corresponding trace below it.
C code:

p0 = malloc(12);
p1 = malloc(16);
p2 = malloc(16);
free(p0);
free(p1);
p3 = malloc(24);

Corresponding trace:

128
4
6
1
a 0 12
a 1 16
a 2 16
f 0
f 1
a 3 24

Definitions in Starter Code

Base address of the heap
 #define HEAP_BASE ((word_t*)mem_heap_lo())

Bound address of the heap (first address after the heap)
 #define HEAP_BOUND ((word_t*)PADD(mem_heap_hi(), 1))

Address of the heap header
 #define HEAP_HEADER_ADDR ((word_t**)HEAP_BASE)

Address of the first block in the heap
 #define ORIGIN_BLOCK_ADDR ((word_t*)PADD(HEAP_BASE,
 WORD_SIZE))

Address of the heap footer word
 #define HEAP_FOOTER_ADDR ((word_t*)PSUB(HEAP_BOUND,
 WORD_SIZE))
Type for word
 typedef unsigned long word_t;

Size of word - pointers and size_t values one word in size
 #define WORD_SIZE (sizeof(word_t))

Alignment - Payloads must be aligned to 2 words
 #define ALIGNMENT ((size_t)(2*WORD_SIZE))

Minimum block size
 #define MIN_BLOCK_SIZE (ALIGNMENT)

Functions for masking header/status word in Starter Code

The size and two tags can be extracted separately from the
block header/status word by masking, using the following
functions:

status_size(x) extracts the block size information from a
 status word, x, masking off the other status bits

 #define SIZE_MASK (~(ALIGNMENT - 1))

 static word_t status_size(word_t status_word) {
 return status_word & SIZE_MASK;
 }
status_pred(x) extracts the predecessor status bit from a
 status word, x, masking off the other status bits

 #define PRED_USED_BIT 2

 static word_t status_pred(word_t status_word) {
 return status_word & PRED_USED_BIT;
 }

status_used(x) extracts the allocation status bit from a
 status word, x, masking off the other status bits

 #define USED_BIT 1

 static word_t status_used(word_t status_word) {
 return status_word & USED_BIT;
 }

make_status(s,p,u) makes a new status word by extracting
 the block size information from status word s, the
 predecessor status bit from word p, and the
 allocation status bit from word u.

 WARNING: to set the predecessor or used bits explicitly,
 pass PRED_USED_BIT or USED_BIT, not 1.

static word_t make_status(word_t size, word_t pred_used,
word_t used) {
 return (size & SIZE_MASK) |
 (pred_used & PRED_USED_BIT) |
 (used & USED_BIT);
 }

Functions for block headers in Starter Code

Provided for easy access/manipulation of block headers

block_get_header(word_t* block) gets header word of block

static word_t block_get_header(word_t* block) {
 return LOAD(block);
}

block_set_header(word_t* block, word_t header) sets the
header of the block

static void block_set_header(word_t* block, word_t header){
 STORE(block, header);
}

block_succ(word_t* block) gets addr of block successor

static word_t* block_succ(word_t* block) {
 // Get block's size from header and add to its address
 return PADD(block, status_size(LOAD(block)));
}

block_pred(word_t* block) gets addr of block predecessor,
assuming predecessor free

static word_t* block_pred(word_t* block) {
 assert(!status_pred(LOAD(block))&&
 "predecessor must be free");

 // Get predecessor size from predecessor
 footer and subtract from this block's address
 word_t footer = LOAD(PSUB(block, WORD_SIZE));

 // Footers must hold sizes
 assert(status_size(footer) == footer &&
 "footer must hold size only, no status bits");

 return PSUB(block, footer);
}

Functions for unscaled pointer arithmetic (PADD and PSUM)

These functions are provided to help avoid pointer
arithmetic mistakes

PADD(void* address, long distance) perform unscaled pointer
addition

static word_t* PADD(void* address, long distance) {

 return ((word_t*)((char*)(address) + (distance)));
}

PSUB(void* address, long distance) perform unscaled pointer
subtraction

static word_t* PSUB(void* address, long distance) {

 return ((word_t*)((char*)(address) - (distance)));
}

Functions for pointer operations

The following functions can be used in place of pointer
operations to help detect errors early and avoid casting
and pointer noise. Verify that all pointers used, stored,
and loaded point within the heap and are word-aligned

LOAD(a) loads a word from memory at address a
static word_t LOAD(word_t* address) {

 assert(check_address(address) && “LOAD must load
 from a 16-byte aligned address within the heap");

 return *((word_t*)(address));
}

PLOAD(a) loads a pointer word from memory at address a
static word_t* PLOAD(word_t** address) {
 assert(check_address(address) && “PLOAD must load
 from a 16-byte aligned address within the heap");

 word_t* ptr = *((word_t**)(address));

 assert((!ptr || check_address(ptr)) && "PLOAD must
 return a 16-byte aligned address within the heap");

 return ptr;
}

STORE(a,w) stores word w into memory at address a
static void STORE(word_t* address, word_t word) {
 assert(check_address(address) && "STORE must store
 to a 16-byte aligned address within the heap");

 ((word_t)address) = word;
}

PSTORE(a,w) stores pointer word w into memory at address a
static void PSTORE(word_t** address, void* ptr) {
 assert((!ptr || check_address(ptr))&& "PSTORE
 must store a 16-byte aligned address within the heap");

 assert(check_address(address) && "PSTORE must store to a
 16-byte aligned address within the heap");

 *((word_t**)address) = ptr;
}

