Basic Memory Circuits

Latch Single-bit memory, level-triggered

Flip-Flop Also single-bit, but edge-triggered

SR (Set Reset) Latch

SR latch uses 2 cross-coupled NOR gates:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(A+B)’</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

What does *unpredictable* mean? Notice in a NOR gate, if either input = 1 to a gate, its output = 0 (1 is a deterministic input)

You wouldn’t usually try to set and reset at the same time (it doesn’t make sense), but if you did, Q and Q’ will both be 0.

However, when you go back to the remember state (S=R=0), Q and Q’ will not stay at 0 0. The circuit passes through one of either the set or reset state on its way back to the remember state, and Q and Q’ change to the complement of one another.

You cannot predict whether Q will be 1 or 0. The final state depends on which transitional state was sensed on the way back to remember.
Clocked SR Latch incorporates a clock input/level-sensitive

Output Q can change in response to S and R whenever the CK input is asserted.

D Latch (avoids unpredictable state)

<table>
<thead>
<tr>
<th>D</th>
<th>Qnext</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
D Flip-Flop edge-sensitive

Output Q will only change value in response to D on the edge/transition of CK from high to low
Circuits using Flip-flops

Register n-bit memory, using n flip-flops, shared clock and clear inputs
Register File set of registers

- **Write** is the write control signal.
- **Write register** is the number of a register to be written with a new value.
- **Read register number 1** and **2** indicate which 2 registers can be read at data ports **Read data 1** and **Read data 2** at any given time.
- Clear and clock (**CLR** and **CLK**) are shared by all the 16 registers.
- **CLR** is active low.
- 2 sets of 4 x 1 multiplexers select which 2 registers are currently being output at the two read ports.

- A decoder uses the write register number to select which of the 4 registers will receive a new value on a write.
RAM memory contains multiple flip-flops, organized into n-bit words, where each word can be accessed through use of an address.
Finite State Machines elevator problem from lab assignment and traffic signal