About how many hours did you spend actively working on this assignment?

Q1 vALUe Judgement [22 points]				
1.1 Condition Flags [5 points] (draw circuits on next page) 1.2. (a) [3 points] A, B with correct result				
A	B	A - B	$\operatorname{sign}(\mathrm{A}-\mathrm{B})$	Is $\mathrm{A}<\mathrm{B}$?
positive	positive			
negative	negative			
different signs	different signs			

1.2. (b) [2 points] A, B with incorrect result

\mathbf{A}	\mathbf{B}	$\mathbf{A}-\mathbf{B}$	$\boldsymbol{\operatorname { s i g n }}(\mathbf{A}-\mathbf{B})$	Is $\mathbf{A}<\mathbf{B}$?
positive				
negative				

1.2. (c) [1 point] Key effect

1.2. (d) [5 points] Draw your circuit for the Less-Than on the next page.
1.2. (e) [1 points] Control lines for Less-Than Invert $A=\quad$ Negate $B=\quad$ Operation $=$
1.3. (a) [4 points] Draw your Equals Flag design on the next page.
1.3. (b) [1 points] Control lines for Equals

Invert $A=\quad$ Negate $B=\quad$ Operation $=$

Q2. Flop-flip-flopping [10 points]				Q2.2 Explanation (You need not fill this entire space.)
Cycles Completed	Q_{2}	\mathbf{Q}_{1}	Q_{0}	
0 (initial)	0	0	0	
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

1.1. (a-c) Condition Flags, 1.2. (d) Less-Than Flag, 1.3. (a) Equals Flag. Label outputs clearly.

Q3 Some Loopy Programs [14 points]
3.1 [8 points] Execution Table for P1

$P C$	Instruction	

3.2 [3 points] Final contents, P1	R2:	R3:	R4:

3.3 [3 points] C statements equivalent to P 1 :
int R0 = 0;
int R1 = 1;
int R2 = R0+R0;

3.4 (a) [3 points] Result of P2

Execute this code, assuming R2 holds 4 and R3 holds 3. Indicate the final register values when the code reaches HALT.

0x0: AND R2, R2, R4
0x2: AND R3, R3, R5
0x4: BEQ R5, RO, 3
0x6: SUB R5, R1, R5
0x8: ADD R4, R4, R4
0XA: JMP 2
0xC: HALT \# Stops execution.
R2: R3: R4: R5:
3.4 (b) [2 points] C line for P2

Single line of C code equivalent to P 2 .
Use only basic C operations (no function calls).
R4 =

Q4 Taking Control [8 points]
Control Unit Truth Table

Instruction Name	Opcode $_{\text {[3:0] }}$ (4 bits)	Reg Write (1 bit)	ALU Op $_{[3: 0]}$ (4 bits)	Mem Store (1 bit)	Mem (1 bit)	Branch (1 bit)	Jump (Q6.2) (1 bit)
LW	0000	1	0010	0	1	0	0
SW							
ADD							
SUB							
AND							
OR							
BEQ							
NAND (Q5.2 [3 pts])							
JMP (Q6.3 [1 pt])							

Q5 Instruction Not Missing [8 points]
Fill in, following the format of slide 14 of the A Simple Processor lecture notes.
16-bit encoding

Assembly	Meaning	Opcode [15:12]	$\begin{gathered} \text { Rs } \\ {[11: 8]} \end{gathered}$	$\begin{gathered} \mathrm{Rt} \\ {[7: 4]} \end{gathered}$	$\begin{gathered} \mathrm{Rd} \\ {[3: 0]} \end{gathered}$
5.1 [3 points] NAND Rs,Rt,Rd	$R[d] \leftarrow \sim(R s \& R t)$				
5.3 [2 points] NOT Rs,Rd	$R[d] \leftarrow \sim R s$				

Q6 Jumping into the Unknown [8 points]

6.1 [6 points]. Below, add a Jump output wire from the Control Unit and modify logic to use it to implement JMP instruction. Note: if you use the new red write split off from Inst, be sure to label which range ([?, ?]) of bits you use.

