WELLESLEY
CS 240

Foundations of Computer Systems

Arithmetic Logic

adders
Arithmetic Logic Unit

https://cs.wellesley.edu/~cs240/ 1

Motivation: how do we go from code to gates?

AND

int count_odds(int array[10]) { :D_
int count = 0;

for (int i = 0; i < 10; i++) {
count += array[i] & O0x1l;

}

return count;

)
o)
(3]

Addition: 1-bit half adder
s -

Carty out
AlB C;L?’ sum
A— sum 0o/0| o 0
B— 0|1] o0 1
1(0] o 1
1(1] 1 0

Carry out

Hint: the smallest solution uses 2 gates from: AND, OR, XOR, NOT, NAND, NOR

Carry in

Addition: 1-bit full adder Aﬂ .

Car‘ry out
Carry in Carry AlB Carry sum
| in Out
0 0|0 0 0
0 0|1 0 1
A . —Sum
B 0 10 0 1
0 111 1 0
1 0|0 0 1
1 0|1 1 0
1 10 1 0
Carry out 1 101 1 1

Addition: n-bit ripple-carry adder

Processor Components

ion!
Carry ing Abs“,act\on
3
-
B,
Carry in ° |
A
B;
A | L — | Instruction
B Sum A Fetch and Registers
B, Decode
|
An»l
e = Sum,;
. -
Carry out g
Carry out,, ;
There are faster, more complicated ways too...
Arithmetic Logic Unit (ALU) 1-bit ALU for bitwise operations
We will use n 1-bit ALUs to build an n-bit ALU.
Each bit i in the result is computed from the corresponding bit i in the two inputs.
a few bits — operation Op | A | B |Result
An example (simplified) 1-bit ALU
l . 0 0 0
Operation
Operand A =) word 0 0 1
words =) Result A4 . 0 0 ! 0
Operand B) E Result 0 1 1
l = 1 /0] o0
; 1
Condition Codes . —— 0 /ew bits B 1 0 1
(sign, overflow, carry-out, zero) 1 1 0
1 1 1

Hardware unit for arithmetic and bitwise operations.

Carry in

1-bit ALU: 3 operations - Used as sefector, chooses n-bit ripple carry adder Ao o ¥ Use the same selector
Operation which function to perform Carry in Mux|=-> Result, for every 1-bit ALU
1
H 3 Sum
Carry in Jv’z\ Ay . +:| - |
A = Sumg
—GTD 0 (00) Bo A
3 ! 0
MUX | Result Al mux[T> Resulty
A = Sum, Sum
B +
—) 1 (1) 1 B, 2 |
A
Sum = Sum, _bi
B + 2 (10) B, n-bit ALU
[
/ E
] Ana 0
Carry out (11 is not used in this example ALU1) Ant :n. Sum. NlIUX Result,
Si
Bn1 . B Y um ,
Carry out Carry out 10
Controlling the ALU Carryin Include subtraction Carryin
> Result, > Result,
How can we control ALU inputs
or add minimal new logic
ALU control lines m > Result, to also compute A-B? > Result;
AND
OR Recall:
: A -B=A+ (-B) :
add =A+ (~B + 1)

Result,.,

Carry out

Plan:
Feed bitwise-not B into the adder
Add an extra 1: how?

Result,.,

Carry out

Negate B Negate B

Include subtraction N . Include subtraction N .
Mux > Resulty Mux > Resulty
Plan to compute A-B: ~ 1 — 1
1. Feed bitwise-not B into the adder Bo «E;:ﬁ] I_-|-:|—>2/ Bo «E;:ﬁ . I_-|-:|—>2/
2. Add an extra 1

A o) ALU control lines m A P
Key insight: Mux > Result; MUXL—> Result,

. 1 0 AND 1
The same selector bit (0 or 1) B, > + B, 5 +
can be used for both! _ |2 0 OR _ |2
A 0 add :
1. Feed the selector into a new 2:1 : 1 subtract)
mux to choose B or ~B
2. Feed the selector in as the carry 0 0
. o . Mux—> Result, ; Mux—> Result,
in to the least significant bit 1 1
2 2
Invert A Negate B Invert A Negate B
Ao gﬁ — — A gﬁ — M
1 0 . 1 0
A NAND B MUx > Result, ALU control lines m Mux|——> Result,
1 1
B +1 - 00 AND B Y1l 2
ANORB [; > — 00 OR >—pl: —
Ay «gﬁ — 0\ 00 add Ay «gﬁ —T o
A<B |v1|ux > Result; 01 subtract |v1|ux > Result;
?7? NAND
By + 2 B B + 2
A==B T — ?? NOR Tl —
: ?? less than :
How can we control ALU inputs or add A { ?? equals A v
minimal new logic to compute each? " >~ 0 i >~ 0
MUX Result, ; MUX Result, ¢
1 1
You will implement some of these in the B Y B Y
Arch Assignment! nl L + 2 nt . + 2
Carry out 5 Carry out

Controlling the ALU

conl
ppstractio™
Control Lines
ALU control lines l
0000 AND Operand A mp
0001 OR Result
esu
0010 add =>
0110 subtract ~ Operand B m)

l

Condition Codes

How many different functions (operations) could this ALU theoretically perform?

4
8
Control Lines
ALU control lines Function

0000 AND Operand A m)

0001 OR Result

0010 add = Rest 16

0110 subtract ~ OPerandB wp

Condition Codes

32

None of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app.

How many different functions (operations) could this ALU theoretically perform?

4
0%
8
0%
Control Lines
ALU control lines | Function l 16
0%
0000 AND Operand A wp
0001 OR Result
0010 add b Rlesu 32
0110 subtract ~ OperandB wmp 0%
Condition Codes
None of the above
0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app.

How many different functions (operations) could this ALU theoretically perform?

4
0%
8
0%
Control Lines
ALU control lines | Function 16
0%
0000 AND Operand A wp
0001 OR Result
0010 add b Rlesu 32
0110 subtract ~ OperandB = 0%
Condition Codes
None of the above
0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app.

ALU conditions

Extra ALU outputs

describing properties of result.

Zero Flag:
1if resultis 00...0 else 0

Sign Flag:
1if result is negative else 0

Carry Flag:
1if carry out else 0

(Signed) Overflow Flag:
1 if signed overflow else 0

You will implement these in the Arch Assignment!

Carry in

Carry out

> Result,

> Result;

Result, ;

