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Arithmetic Logic Unit
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Motivation: how do we go from code to gates?
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int count_odds(int array[10]) {
    int count = 0;
    for (int i = 0; i < 10; i++) {
        count += array[i] & 0x1;
    }
    return count;
}

AND

???

ADD



Addition: 1-bit half adder
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ex

Hint: the smallest solution uses 2 gates from: AND, OR, XOR, NOT, NAND, NOR



Addition: 1-bit full adder
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Addition: n-bit ripple-carry adder
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…

There are faster, more complicated ways too…
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ALU

Processor Components
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Registers Memory
Instruction 
Fetch and 
Decode

1 324

Abstraction!



Arithmetic Logic Unit (ALU)
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Hardware unit for arithmetic and bitwise operations.

Result

wordOperand A

Operand B

words

Condition Codes 
(sign, overflow, carry-out, zero)

a few bits

Operationa few bits

1

ALU



1-bit ALU for bitwise operations
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We will use n 1-bit ALUs to build an n-bit ALU. 
Each bit i in the result is computed from the corresponding bit i in the two inputs.

M
U

X

A

B

0

1

Operation

Result

Op A B Result

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

exAn example (simplified) 1-bit ALU



1-bit ALU: 3 operations
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Result

2

2Carry in

+ Sum

Carry out

MUX

(00)

(01)

(10)

(11 is not used in this example ALU!)

Used as selector, chooses  
which function to perform
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n-bit ripple carry adder A0
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n-bit ALU

10

Use the same selector 
for every 1-bit ALU 



Controlling the ALU
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ALU control lines Function

  00 AND
  01 OR

  10 add



Include subtraction
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How can we control ALU inputs 
or add minimal new logic 
to also compute A-B?
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… ....
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Recall:  
A - B = A + (-B)
      = A + (~B + 1)  
         
Plan: 
Feed bitwise-not B into the adder 
Add an extra 1: how?  
         



Include subtraction
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B1 0

1

B0 0

1

Bn-1 0

1

....
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A0

A1

An-1

Negate B

Plan to compute A-B: 
1. Feed bitwise-not B into the adder 
2. Add an extra 1 

         

1. Feed the selector into a new 2:1 
mux to choose B or ~B 

2. Feed the selector in as the carry 
in to the least significant bit 

 
         

Key insight:  
The same selector bit (0 or 1) 
can be used for both!



Include subtraction

14

0

1
Result0

2+

MUX

0

1
Resultn-1

2+
Carry out

MUX

0

1
Result1

2+

MUX

Operation

… ....

B1 0

1

B0 0

1

Bn-1 0

1

....

2

A0

A1

An-1

Negate B

ALU control lines Function

  00 AND
  01 OR

  10 add

  10 subtract

… …

 000 AND

 001 OR

 010 add

 110 subtract

… …



A NAND B 
 
 
A NOR B 
 
 
A<B 
 
 
A==B 
 
 
How can we control ALU inputs or add  
minimal new logic to compute each?  

You will implement some of these in the 
Arch Assignment!
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ALU control lines Function

0000 AND
0001 OR
0010 add
0110 subtract
???? NAND
???? NOR
???? less than
???? equals



Controlling the ALU
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ALU control lines Function

0000 AND
0001 OR
0010 add
0110 subtract

… …

Operand A

Operand B

Result

Control Lines

Condition Codes

Abstraction!

ALU
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ALU conditions (additional outputs)
Extra ALU outputs  
describing properties of result. 

Zero Flag: 
1 if result is 00...0 else 0 

Sign Flag: 
1 if result is negative else 0 

Carry Flag: 
1 if carry out else 0 

(Signed) Overflow Flag: 
1 if signed overflow else 0
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You will implement these in the Arch Assignment!


