
CS 251 Fall 2019 
Principles of Programming Languages 
Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Arithmetic Logic
adders 

Arithmetic Logic Unit

1

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/


Motivation: how do we go from code to gates?

2

int count_odds(int array[10]) {
    int count = 0;
    for (int i = 0; i < 10; i++) {
        count += array[i] & 0x1;
    }
    return count;
}

AND

???

ADD



Addition: 1-bit half adder

3

A
B

Sum

Carry out

A B Carry 
Out Sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

+A

B
Sum

Carry out

ex

Hint: the smallest solution uses 2 gates from: AND, OR, XOR, NOT, NAND, NOR



Addition: 1-bit full adder

4

Carry 
in A B Carry 

Out Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

+A

B
Sum

Carry in

Carry out

A

Carry in

B
Sum

Carry out



Addition: n-bit ripple-carry adder

5

+A0

B0
Sum0

Carry in0

+An-1

Bn-1
Sumn-1

Carry outn-1

+A1

B1
Sum1

+A2

B2
Sum2

…

There are faster, more complicated ways too…

A

Carry in

B
Sum

Carry out



ALU

Processor Components

6

Registers Memory
Instruction 
Fetch and 
Decode

1 324

Abstraction!



Arithmetic Logic Unit (ALU)

7
Hardware unit for arithmetic and bitwise operations.

Result

wordOperand A

Operand B

words

Condition Codes 
(sign, overflow, carry-out, zero)

a few bits

Operationa few bits

1

ALU



1-bit ALU for bitwise operations

8

We will use n 1-bit ALUs to build an n-bit ALU. 
Each bit i in the result is computed from the corresponding bit i in the two inputs.

M
U

X

A

B

0

1

Operation

Result

Op A B Result

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

exAn example (simplified) 1-bit ALU



1-bit ALU: 3 operations

9

A

B

0

1

Operation

Result

2

2Carry in

+ Sum

Carry out

MUX

(00)

(01)

(10)

(11 is not used in this example ALU!)

Used as selector, chooses  
which function to perform



+A0

B0

Sum0

Carry in

+An-1

Bn-1

Sumn-1

Carry out

+A1

B1

Sum1

+A2

B2

Sum2

…

n-bit ripple carry adder A0

B0

0

1
Result0

2

Carry in

+ Sum

MUX

An-1

Bn-1

0

1
Resultn-1

2+ Sum

Carry out

MUX

A1

B1

0

1
Result1

2+ Sum

MUX

Operation

… ....

2

n-bit ALU

10

Use the same selector 
for every 1-bit ALU 



Controlling the ALU

11

A0

B0

0

1
Result0

2

Carry in

+ Sum

MUX

An-1

Bn-1

0

1
Resultn-1

2+ Sum

Carry out

MUX

A1

B1

0

1
Result1

2+ Sum

MUX

Operation

… ....

2

ALU control lines Function

  00 AND
  01 OR

  10 add



Include subtraction

12

How can we control ALU inputs 
or add minimal new logic 
to also compute A-B?

A0

B0

0

1
Result0

2

Carry in

+ Sum

MUX

An-1

Bn-1

0

1
Resultn-1

2+ Sum

Carry out

MUX

A1

B1

0

1
Result1

2+ Sum

MUX

Operation

… ....

2

Recall:  
A - B = A + (-B)
      = A + (~B + 1)  
         
Plan: 
Feed bitwise-not B into the adder 
Add an extra 1: how?  
         



Include subtraction

13

0

1
Result0

2+

MUX

0

1
Resultn-1

2+
Carry out

MUX

0

1
Result1

2+

MUX

Operation

… ....

B1 0

1

B0 0

1

Bn-1 0

1

....

2

A0

A1

An-1

Negate B

Plan to compute A-B: 
1. Feed bitwise-not B into the adder 
2. Add an extra 1 

         

1. Feed the selector into a new 2:1 
mux to choose B or ~B 

2. Feed the selector in as the carry 
in to the least significant bit 

 
         

Key insight:  
The same selector bit (0 or 1) 
can be used for both!



Include subtraction

14

0

1
Result0

2+

MUX

0

1
Resultn-1

2+
Carry out

MUX

0

1
Result1

2+

MUX

Operation

… ....

B1 0

1

B0 0

1

Bn-1 0

1

....

2

A0

A1

An-1

Negate B

ALU control lines Function

  00 AND
  01 OR

  10 add

  10 subtract

… …

 000 AND

 001 OR

 010 add

 110 subtract

… …



A NAND B 
 
 
A NOR B 
 
 
A<B 
 
 
A==B 
 
 
How can we control ALU inputs or add  
minimal new logic to compute each?  

You will implement some of these in the 
Arch Assignment!

15

0

1
Result0

2+

MUX

0

1
Resultn-1

2+
Carry out

MUX

0

1
Result1

2+

MUX

Operation

… ....
A1 0

1

B1 0

1

A0 0

1

B0 0

1

Negate B

An-1 0

1

Bn-1 0

1

....

Invert A

....

2



16

0

1
Result0

2+

MUX

0

1
Resultn-1

2+
Carry out

MUX

0

1
Result1

2+

MUX

Operation

… ....
A1 0

1

B1 0

1

A0 0

1

B0 0

1

Negate B

An-1 0

1

Bn-1 0

1

....

Invert A

....

2

ALU control lines Function

0000 AND
0001 OR
0010 add
0110 subtract
???? NAND
???? NOR
???? less than
???? equals



Controlling the ALU

17

ALU control lines Function

0000 AND
0001 OR
0010 add
0110 subtract

… …

Operand A

Operand B

Result

Control Lines

Condition Codes

Abstraction!

ALU



18



19



20



ALU conditions (additional outputs)
Extra ALU outputs  
describing properties of result. 

Zero Flag: 
1 if result is 00...0 else 0 

Sign Flag: 
1 if result is negative else 0 

Carry Flag: 
1 if carry out else 0 

(Signed) Overflow Flag: 
1 if signed overflow else 0

21

A0

B0

0

1
Result0

2

Carry in

+ Sum

MUX

An-1

Bn-1

0

1
Resultn-1

2+ Sum

Carry out

MUX

A1

B1

0

1
Result1

2+ Sum

MUX

Operation

… ....

2

You will implement these in the Arch Assignment!


