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How does execution time grow with SIZE?

int array[SIZE]; 
fillArrayRandomly(array); 
int s = 0; 

for (int i = 0; i < 200000; i++) { 
  for (int j = 0; j < SIZE; j++) { 
    s += array[j]; 
  } 
} 
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Processor-memory bottleneck
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Main 
Memory

CP
U Reg

Processor performance 
doubled about  
every 18 months Bus bandwidth 

evolved much slower

Solution: caches

Cache

Bandwidth: 256 bytes/cycle 
Latency: 1-few cycles

Bandwidth: 2 Bytes/cycle 
Latency: 100 cycles

Example

Cache
English: 
n. a hidden storage space for provisions, weapons, or treasures 
v. to store away in hiding for future use 

Computer Science: 
n. a computer memory with short access time used to store 
frequently or recently used instructions or data 
v. to store [data/instructions] temporarily for later quick 
retrieval 

Also used more broadly in CS: software caches, file caches, etc.
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Websites

General cache mechanics
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Memory Larger, slower, cheaper. 
Partitioned into blocks (lines).

Data is moved 
in block units

Smaller, faster, more expensive. 
Stores subset of memory blocks. 
    (lines)

CPU Block: unit of data 
in cache and memory. 
(a.k.a. line)

Cache hit
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Memory

1. Request data in block b.Request: 14

14
2. Cache hit: 
     Block b is in cache.

CPU
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Cache miss
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Memory

1. Request data in block b.Request: 12

2. Cache miss: 
     block is not in cache

4. Cache fill: 
     Fetch block from memory, 
     store in cache.

Request: 12
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3. Cache eviction: 
     Evict a block to make room, 
     maybe store to memory.

Placement Policy: 
where to put block in cache

Replacement Policy: 
which block to evict

CPU

Memory Hierarchy and Cache

Memory

Memory hierarchy 
Why does it work?
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persistent storage(hard disk, flash, over network, cloud, etc.) 
GB/TB, >5M ns, 20-150 MBps

main memory (DRAM) 
<~64MB, 80-250ns, 1K-5K MBps

L3 cache 
(SRAM, off-chip)

L1 cache (SRAM, on-chip) 
<16MB, 0.5-25ns access,  

5K-15K MBps

L2 cache 
(SRAM, on-chip)

Registers 
<1KB,  

0.25-0.5ns, 
20K MBps 

small, fast, 
power-hungry, 
expensive

large, slow, 
power-efficient, 
cheap
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explicitly 
program-
controlled

Locality: why caches work

Programs tend to use data and instructions at addresses near or 
equal to those they have used recently. 

Temporal locality:   
Recently referenced items are likely  
to be referenced again in the near future. 

Spatial locality:   
Items with nearby addresses are likely 
to be referenced close together in time. 

How do caches exploit temporal and spatial locality?
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block

block

Locality #1: Basic iteration over array

Data: 
Temporal: sum referenced in each iteration 
Spatial: array a[] accessed in stride 1 pattern 

Instructions: 
Temporal: execute loop repeatedly 
Spatial: execute instructions in sequence 

Assessing locality in code is an important programming skill.
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sum = 0; 
for (i = 0; i < n; i++) { 
  sum += a[i]; 
} 
return sum;

What is stored in memory?



Locality #2: iteration over 2D array
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a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]

  1: a[0][0]
  2: a[0][1]
  3: a[0][2]
  4: a[0][3]
  5: a[1][0]
  6: a[1][1]
  7: a[1][2]
  8: a[1][3]
  9: a[2][0]
10: a[2][1]
11: a[2][2]
12: a[2][3]

stride 1

int sum_array_rows(int a[M][N]) { 
    int sum = 0; 

    for (int i = 0; i < M; i++) { 
        for (int j = 0; j < N; j++) { 
            sum += a[i][j]; 
        } 
    } 
    return sum; 
}

row-major M x N 2D array in C

ex Locality #3: iteration over 2D array
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int sum_array_cols(int a[M][N]) { 
    int sum = 0; 

    for (int j = 0; j < N; j++) { 
        for (int i = 0; i < M; i++) { 
            sum += a[i][j]; 
        } 
    } 
    return sum; 
}

  1: a[0][0]
  2: a[1][0]
  3: a[2][0]
  4: a[0][1]
  5: a[1][1]
  6: a[2][1]
  7: a[0][2]
  8: a[1][2]
  9: a[2][2]
10: a[0][3]
11: a[1][3]
12: a[2][3]

stride N

row-major M x N 2D array in C

…

…
a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]

Swapped 
loop order

ex

Locality #4
What is "wrong" with this code? 
How can it be fixed?
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int sum_array_3d(int a[M][N][N]) { 
    int sum = 0; 

    for (int i = 0; i < N; i++) { 
        for (int j = 0; j < N; j++) { 
            for (int k = 0; k < M; k++) { 
                sum += a[k][i][j]; 
            } 
        } 
    } 
    return sum; 
}

Cost of cache misses
Miss cost could be 100 × hit cost. 

99% hits could be twice as good as 97%.  How? 
Assume cache hit time of 1 cycle, miss penalty of 100 cycles 

Mean access time: 
97% hits:  (0.97 * 1 cycle) + (0.03 * 100 cycles) = 3.97 cycles 
99% hits:  (0.93 * 1 cycle) + (0.01 * 100 cycles)  = 1.93 cycles
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hit/miss rates



Cache performance metrics
Miss Rate 

Fraction of memory accesses to data not in cache (misses / accesses) 
Typically: 3% - 10% for L1; maybe < 1% for L2, depending on size, etc. 

Hit Time 
Time to find and deliver a block in the cache to the processor. 
Typically: 1 - 2 clock cycles for L1; 5 - 20 clock cycles for L2 

Miss Penalty 
Additional time required on cache miss = main memory access time 
Typically 50 - 200 cycles for L2 (trend: increasing!)
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Cache organization
Block 
Fixed-size unit of data in memory/cache 

Placement Policy 
Where in the cache should a given block be stored? 
▪ direct-mapped, set associative 

Replacement Policy 
What if there is no room in the cache for requested data? 
▪ least recently used, most recently used 

Write Policy 
When should writes update lower levels of memory hierarchy? 
▪ write back, write through, write allocate, no write allocate
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Blocks
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00000000

00001000

00010000

00011000

Memory
(byte) 

address

00010010

Divide address space into fixed-size aligned blocks. 
power of 2

full byte address

Block ID 
address bits - offset bits

offset within block 
log2(block size)

Example: block size = 8

block 

0

block 

1

block 

2

block 

3

00010001
00010010
00010011
00010100
00010101
00010110
00010111

...

Placement policy
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00 
01 
10 
11

Index
Cache

S = # slots = 4

Small, fixed number of block slots.

Large, fixed number of block slots.

Memory Mapping: 
index(Block ID) = ???Block ID

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111



Placement: direct-mapped
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0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111

Memory
Block ID

Cache

S = # slots = 4

(easy for power-of-2 block sizes...)

Mapping: 
index(Block ID) = Block ID mod S

Placement: mapping ambiguity?
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00 
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10 
11

Index

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111

Memory

Which block is in slot 2?

Block ID

Cache

S = # slots = 4

Mapping: 
index(Block ID) = Block ID mod S

Placement: tags resolve ambiguity
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00 
01 
10 
11

Index

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111

Memory

Block ID bits not used for index.

Block ID

Tag Data
00 
11 
01 
01

Cache

S

Mapping: 
index(Block ID) = Block ID mod S

Address = tag, index, offset
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00010010 full byte address

Block ID 
Address bits - Offset bits

Offset within block 
log2(block size) = b

# address bits

Block ID bits - Index bits 
Tag

log2(# cache slots) 
Index

a-bit Address
s bits(a-s-b) bits b bits

Offset Tag Index

Where within a block?

What slot in the cache?
Disambiguates slot contents.



Cache size puzzle 
Cache starts empty. 
Access (address, hit/miss) stream: 

(0xA, miss), (0xB, hit), (OxC, miss) 

What could the block size be?
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block size >= 2 bytes block size < 8 bytes

ex

1. First, convert the hex to integers 
2. Remember that blocks must be aligned to the block size  
3. Hint: there are two possible block sizes!

Example memory hierarchy
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Regs

L1  
d-cache

L1  
i-cache

L2 unified cache

Core 0

Regs

L1  
d-cache

L1  
i-cache

L2 unified cache

Core 3

…

L3 unified cache 
(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache: 
32 KB,  8-way,  
Access: 4 cycles 

L2 unified cache: 
256 KB, 8-way,  
Access: 11 cycles 

L3 unified cache: 
8 MB, 16-way, 
Access: 30-40 cycles 

Block size: 64 bytes for 
all caches.

slower, but 
more likely 
to hit

Typical laptop/desktop processor 
(c.a. 201_)

Software caches
Examples 

File system buffer caches, web browser caches, database caches, 
network CDN caches, etc. 

Some design differences 
Often use complex replacement policies 
Not necessarily constrained to single “block” transfers 
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Cache-friendly code
Locality, locality, locality. 
Programmer can optimize for cache performance 

Data structure layout 
Data access patterns 

Nested loops 
Blocking  

All systems favor “cache-friendly code” 
Performance is hardware-specific 
Generic rules capture most advantages 

Keep working set small (temporal locality) 
Use small strides (spatial locality) 
Focus on inner loop code

28



Example: Matrix Multiplication
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a b

i

j

*
c

=

c = (double *) calloc(sizeof(double), n*n); 

/* Multiply n x n matrices a and b  */ 
void mmm(double *a, double *b, double *c, int n) { 
    int i, j, k; 
    for (i = 0; i < n; i++) 
 for (j = 0; j < n; j++) 
             for (k = 0; k < n; k++) 
          c[i*n + j] += a[i*n + k]*b[k*n + j]; 
}

i

j

memory access pattern?

Cache Miss Analysis
Assume:  

Matrix elements are doubles 
Cache block = 64 bytes = 8 doubles 
Cache size C is much smaller than n 

First iteration: 
n/8 + n = 9n/8 misses 
(omitting matrix c) 

Afterwards in cache: 
(schematic)
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*=

n

*=

8 wide

n/8 misses
…

n m
isses

each item in column in 
different cache line

spatial locality: 
chunks of 8 items in a row 
 in same cache line

Cache Miss Analysis
Assume:  

Matrix elements are doubles 
Cache block = 64 bytes = 8 doubles 
Cache size C is much smaller than n 

Other iterations: 
Again: 
n/8 + n = 9n/8 misses 
(omitting matrix c) 

Total misses: 
9n/8 * n2 = (9/8) * n3 
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n

*=

8 wide

once per element

Blocked Matrix Multiplication
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c = (double *) calloc(sizeof(double), n*n); 

/* Multiply n x n matrices a and b  */ 
void mmm(double *a, double *b, double *c, int n) { 

int i, j, k; 
for (i = 0; i < n; i+=B) 

for (j = 0; j < n; j+=B) 
for (k = 0; k < n; k+=B) 

/* B x B mini matrix multiplications */ 
for (i1 = i; i1 < i+B; i1++) 

for (j1 = j; j1 < j+B; j1++) 
for (k1 = k; k1 < k+B; k1++) 

c[i1*n + j1] += a[i1*n + k1]*b[k1*n + j1]; 
}

a b

i1

j1

*
c

=

Block size B x B



Cache Miss Analysis
Assume:  

Cache block = 64 bytes = 8 doubles 
Cache size C << n (much smaller than n) 
Three blocks       fit into cache: 3B2 < C 

Other (block) iterations: 
Same as first iteration 
2n/B * B2/8 = nB/4 

Total misses: 
nB/4 * (n/B)2 = n3/(4B)
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*=

Block size B x B

n/B blocks

Summary

No blocking:   (9/8) * n3 

Blocking: 1/(4B) * n3 

If B = 8    difference is 4 * 8 * 9 / 8   = 36x 
If B = 16  difference is 4 * 16 * 9 / 8 = 72x 

Reason for dramatic difference: 
Matrix multiplication has inherent temporal locality: 

Input data: 3n2, computation 2n3 
Every array element used O(n) times! 

But program has to be written properly
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for (i = 0; i < n; i+=B) 
for (j = 0; j < n; j+=B) 

for (k = 0; k < n; k+=B) 
/* B x B mini matrix multiplications */ 
for (i1 = i; i1 < i+B; i1++) 

for (j1 = j; j1 < j+B; j1++) 
for (k1 = k; k1 < k+B; k1++) 

// CODE HERE 
}
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typedef struct {
    int vel[3];
    int acc[3];
} point;

void clear1(point *p, int n) {
    int i, j;
    for (i=0; i<n; i++){
        for (j=0; j<3; j++) {
            p[i].vel[j] = 0;
            p[i].acc[j] = 0;
        }
    }
}

void clear2(point *p, int n) {
    int i, j;
    for (i=0; i<n; i++){
        for (j=0; j<3; j++)
            p[i].vel[j] = 0;
        for (j=0; j<3; j++)
            p[i].acc[j] = 0;
    }
}

void clear3(point *p, int n) {
    int i, j;
    for (j=0; j<3; j++){
        for (i=0; i<n; i++)
            p[i].vel[j] = 0;
        for (i=0; i<n; i++)
            p[i].acc[j] = 0;
    }
}

#define N 100
point p[N];

Exercise: order these 3 functions by locality ex


