Integer Representation

Representation of integers: unsigned and signed
Modular arithmetic and overflow
Sign extension
Shifting and arithmetic
Multiplication
Casting

Fixed-width integer encodings

Unsigned $\subset \mathbb{N}$ non-negative integers only

Signed $\subset \mathbb{Z}$ both negative and non-negative integers

n bits offer only 2^{n} distinct values.

Terminology: \begin{tabular}{c}
"Most-significant" bit(s) "high-order" bit(s)

or

MSB

$\downarrow_{0110010110101001}$

"Least-significant" bit(s)

or "low-order" bit(s)
\end{tabular}

(4-bit) unsigned integer representation

$\left.\begin{array}{llll}1 & 0 & 1 & 1 \\ 8 & 4 & 2 & 1 \\ 2^{3} & 2^{2} & 2^{1} & 2^{0} \\ 3 & 2 & 1 & 0\end{array}\right\}$ weight $=1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$
n-bit unsigned integers:
unsigned minimum $=0$
unsigned maximum $=2^{n-1}$

modular arithmetic, unsigned overflow

$x+y$ in n-bit unsigned arithmetic is $(x+y) \bmod 2^{N}$ in math
unsigned overflow = "wrong" answer = wrap-around = carry 1 out of MSB = math answer too big to fit
Unsigned addition overflows if and only if a carry bit is dropped.

(4-bit) two's complement

 signed integer representation
still only 2^{n} distinct values, half negative.

4-bit two's complement integers:
signed minimum $=-\left(2^{(n-1)}\right)$
signed maximum $=2(n-1)-1$

4-bit min: 1000
4-bit max: 0111

alternate signed attempt: sign-magnitude

Most-significant bit (MSB) is sign bit

0 means non-negative 1 means negative
Remaining bits are an unsigned magnitude

Note: this is not two's complement

00000000 represents \qquad Anything weird here?

Arithmetic?

Example:

\qquad

10000101 represents \qquad

two's complement vs. unsigned

unsigned range
(2n values)
$-\left(2^{(n-1)}\right)$
$0 \quad 2^{(n-1)}-1$
2^{n-1}
two's complement range
(2n values)

4-bit unsigned vs. 4-bit two's complement

1011

8-bit representations

00001001
 10000001

1111111100100111

n-bit two's complement numbers:

minimum $=$

maximum $=$

Consider a single byte: `unsigned char \(x=10101100 ; `\). What is the result of ` $x \ll 2$ '?

10110011

10110000

00101011

11000000

Consider a single byte: `unsigned char \(x=10101100 ; `\). What is the result of ${ }^{\prime} x \gg 2$ '?

11101011

10110000

00101011

01010110

two's complement (signed) addition

$$
\begin{array}{rcrr}
2 & 0010 & -2 & 11 \\
1110 \\
+3 & +0011 & +-3 & +1101 \\
\hline 5 & 0101 & -5 & 1011 \\
& 111 & & \\
-2 & 1110 & 2 & 0010 \\
+3 & +0011 & \frac{+-3}{-1} & \frac{+1101}{1111}
\end{array}
$$

Modular Arithmetic

two's complement (signed) overflow

Addition overflows

if and only if the arguments have the same sign but the result does not. if and only if the carry in and carry out of the sign bit differ.

Modular Arithmetic

Some CPUs/languages raise exceptions on overflow.
C and Java cruise along silently... Feature? Oops?

Recall: software correctness

Ariane 5 Rocket, 1996

Exploded due to cast of 64-bit floating-point number to 16 -bit signed number. Overflow.

Boeing 787, 2015

"... a Model 787 airplane ... can lose all alternating current (AC) electrical power caused by a software counter internal to the GCUs that will overflow after 248 days of continuous power. We are issuing this AD to prevent loss of all AC electrical power, which could result in loss of control of the airplane."
--FAA, April 2015

A few reasons two's complement is awesome

Arithmetic hardware
The carry algorithm works for everything!
Sign

$$
\begin{aligned}
& \text { Even subtraction! } \\
& x-y==x+-y==x+\sim y+1
\end{aligned}
$$

The MSB can be interpreted as a sign bit. Negative one
-1_{10} is encoded as all ones: 0b11...1
Complement rules

$$
-x==\sim^{\sim} x+1
$$

5 is $0 b 0101$
~0b0101 is $0 b 1010$

$$
\text { Ob1011 is }-5
$$

Another derivation

How should we represent 8-bit negatives?

- For all positive integers \boldsymbol{x}, we want the representations of \boldsymbol{x} and $-\boldsymbol{x}$ to sum to zero.
- We want to use the standard addition algorithm.

11111111		
00000001	1111111	
+11111111		
+0000010	+11111110	11111111 00000011 +11111101 00000000
00000000	00000000	

- Find a rule to represent $-x$ where that works...

Convert/cast signed number to larger type.

$$
\begin{aligned}
& 00000010 \text {-bit } 2 \\
& \text { _-_-_-__ } 00000010 \text { 16-bit } 2 \\
& 11111100 \text { 8-bit -4 } \\
& \text { _________11111100 16-bit -4 }
\end{aligned}
$$

Rule/name?

Sign extension for two's complement

unsigned shifting and arithmetic

logical shift left
$\mathrm{n}=$ shift distance in bits, $\mathrm{w}=$ width of encoding in bits

logical shift right

unsigned
x = 237;
$y=x \gg 2 ;$
$y==59$

two's complement shifting and arithmetic

signed
$x=-101 ;$
$y=x \ll 2 ;$
$y==108$

logical shift left
$\mathrm{n}=$ shift distance in bits, $\mathrm{w}=$ width of encoding in bits

11101101

signed
$x=-19$;
$y=x \gg 2 ;$
$y=-5$

Consider a single signed byte: `signed char $\mathrm{x}=10101100$; . What is the result of ' $x \gg 2$ '?

10110011

00101011

11101100

11101011

shift-and-add

Available operations

$$
\begin{array}{ll}
\mathrm{x} \ll \mathrm{k} & \text { implements } \mathrm{x} * 2^{k} \\
\mathrm{x}+\mathrm{y} &
\end{array}
$$

Implement $\mathrm{y}=\mathrm{x} * 24$ using only $\ll,+$, and integer literals

$$
\begin{aligned}
& y=x *(16+8) ; \\
& y=(x * 16)+(x * 8) ; \\
& y=(x \ll 4)+(x \ll 3)
\end{aligned}
$$

Parenthesize shifts to be clear about precedence, which may not always be what you expect.

Casting Integers in C

Number literals: 37 is signed, 37 U is unsigned

Integer Casting: bits unchanged, just reinterpreted.
Explicit casting:

```
int tx = (int) 73U; // still 73
unsigned uy = (unsigned) -4; // big positive #
```

Implicit casting: Actually does

```
tx = ux; // tx = (int)ux;
uy = ty; // uy = (unsigned)ty;
void foo(int z) { ... }
foo(ux); // foo((int)ux);
if (tx < ux) ... // if ((unsigned)tx < ux) ...
```


More Implicit Casting in C

If you mix unsigned and signed in a single expression, then signed values are implicitly cast to unsigned.

> How are the argument bits interpreted?

Argument $_{1}$	Op	Argument $_{2}$
0	$==$	0 U
-1	$<$	0
-1	$<$	0 U
2147483647	$<$	$-2147483647-1$
2147483647 U	$<$	$-2147483647-1$
-1	$<$	-2
(unsigned)-1	$<$	-2
2147483647	$<$	2147483648 U
2147483647	$<$	(int)2147483648U

$$
\text { Note: } \quad T_{\min }=-2,147,483,648 \quad T_{\max }=2,147,483,647
$$

$$
T_{\min } \text { must be written as }-2147483647-1 \text { (see pg. } 77 \text { of CSAPP for details) }
$$

Let x be an `int` (that is, a 32-bit signed two's complement integer). Write an expression in terms of `\(x\)` without using constants greater than `OxFF'.
Write an expression that sets all bytes other than the most significant byte to 0 .

Nobody has responded yet.
Hang tight! Responses are coming in.

Aside: real-world connection to Alexa's research

Security-critical bug in shift-and-extend code

(2) Guest-controlled out-of-bounds read/write on x86_64

GHSA-ff4p-7xrq-q5r8 published on Mar 8 by alexcrichton

Conceptually, the compiler tried to convert this with a 32-bit x:

```
address + zero_extend_64(x << 2)
```


To this:

```
address + (zero_extend_64(x) << 2)
```


Incorrect address calculated!

