
CS 251 Fall 2019
Principles of Programming Languages
Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Practice problems
For Exam 2: ISA

1

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Struct practice problem (similar to CSAPP 3.45)

2

struct s {
 char *a;
 short b;
 int *c;
 char d;
 int e;
 char f;
};

1. Draw a picture of how this struct is laid out in memory, labeling the
byte offset of each field (starting with a at offset +0);

2. Modify your picture to show how much space a single element of this
struct would take if used as an element of an array (e.g., the total size).

3. Rearrange the fields of the struct to minimize wasted space. Draw the
new offsets and the total size.

Recall: a short is
2 bytes in C

ex

Struct practice problem (similar to CSAPP 3.45)

3

struct s {
 char *a;
 short b;
 int *c;
 char d;
 int e;
 char f;
};

1. Draw a picture of how this struct is laid out in memory, labeling the
byte offset of each field (starting with a at offset +0);

2. Modify your picture to show how much space a single element of this
struct would take if used as an element of an array (e.g., the total size).

Recall: a short is
2 bytes in C

ex

a b c d e f
+0 +8 +10 +16 +24,+25 +28 +32,+33 +40

Struct practice problem (similar to CSAPP 3.45)

4

struct s {
 char *a;
 short b;
 int *c;
 char d;
 int e;
 char f;
};

1. Draw a picture of how this struct is laid out in memory, labeling the
byte offset of each field (starting with a at offset +0);

2. Modify your picture to show how much space a single element of this
struct would take if used as an element of an array (e.g., the total size).

3. Rearrange the fields of the struct to minimize wasted space. Draw the
new offsets and the total size.

Recall: a short is
2 bytes in C

ex

a b c d e f
+0 +8 +10 +16 +24,+25 +28 +32,+33 +40

a c e b e f
+0 +8 +16 +20 +24

2-D array practice problem

5

long a[2][3]; 1. Draw a picture of how this array is laid out in memory, labeling the
indices and byte offset of each element (starting with a[0][0] at
offset +0);

2. Write x86 assembly code to
implement this function.

long get_elem_1_2(long a[2][3]){
 return a[1][2];
}

Recall: index = C*r + c
 scale by element size

ex

2-D array practice problem: solution

6

long a[2][3]; 1. Draw a picture of how this array is laid out in memory, labeling the
indices and byte offset of each element (starting with a[0][0] at
offset +0);

2. Write x86 assembly code to
implement this function.

long get_elem_1_2(long a[2][3]){
 return a[1][2];
}

Recall: index = C*r + c
 scale by element size

ex

a[0][0] a[0][1]a[0][2]a[1][0]a[1][1]a[1][2]

+0 +8 +16 +24 +32 +40

 movq 40(%rdi),%rax
 retq

Since we know the size, we can calculate
C*r+c = 3*1+2 = 5, 5*sizeof(long) = 5*8 = 40

x86 struct/LinkedList practice problem

7

Consider the above function that calculates something useful about a linked list of
unsigned integers using a helper function.

1. Identify which pieces of x86 refer to next and value.
2. Identify the base case of the recursive function nodeFunc2. What is returned in

this case?
3. Identify the recursive case of nodeFunc2. What is the argument passed to the

recursive call?
4. What is nodeFunc1 calculating with helper nodeFunc2?

ex
nodeFunc2:
 pushq %rbp
 pushq %rbx
 subq $8, %rsp
 movl %esi, %ebx
 movslq %esi, %rax
 testq %rdi, %rdi
 je .L1
 movq %rdi, %rbp
 movl 8(%rdi), %esi
 cmpl %esi, %ebx
 jb .L5
.L3: movq 0(%rbp), %rdi
 movl %ebx, %esi
 call nodeFunc2
.L1: addq $8, %rsp
 popq %rbx
 popq %rbp
 ret
.L5: movl %esi, %ebx
 jmp .L3

typedef struct Node {
 struct Node* next;
 unsigned int value;
} Node;

long nodeFunc2(Node* node, unsigned int x) {
 // ???
}

long nodeFunc1(Node* node) {
 nodeFunc2(node, 0);
}

x86 struct/LinkedList practice problem

8

ex
nodeFunc2:
 pushq %rbp
 pushq %rbx
 subq $8, %rsp
 movl %esi, %ebx
 movslq %esi, %rax
 testq %rdi, %rdi
 je .L1
 movq %rdi, %rbp
 movl 8(%rdi), %esi
 cmpl %esi, %ebx
 jb .L5
.L3: movq 0(%rbp), %rdi
 movl %ebx, %esi
 call nodeFunc2
.L1: addq $8, %rsp
 popq %rbx
 popq %rbp
 ret
.L5: movl %esi, %ebx
 jmp .L3

typedef struct Node {
 struct Node* next;
 unsigned int value;
} Node;
long nodeFunc2(Node* node, unsigned int max) {
 if (node == 0) {
 return max;
 }
 if (node->value > max) {
 max = node->value;
 }
 nodeFunc2(node->next, max);
}
long nodeFunc1(Node* node) {
 nodeFunc2(node, 0);
}

recursive case

base case
node = %rdi

8(%rdi) accesses node->value, (%rdi) accesses node->next,
if (node->value > x), jump to .L5, sets %ebx to node->value
%ebx calculates the max of node->value and x

in the base case, returns second arg, x (the maximum value found so far)

nodeFunc1 uses its helper to find the maximum value within a linked list.

At call, %rsp
must be a
multiple of 16

x86 recursive procedure practice problem

9

 mystery:
401106 mov $0x0,%eax
40110b test %edi,%edi
40110d jne 401110 <mystery+0xa>
40110f ret
401110 push %rbx
401111 mov %esi,%ebx
401113 sub $0x1,%edi
401116 call 401106 <mystery>
40111b movslq %ebx,%rsi
40111e add %rsi,%rax
401121 pop %rbx
401122 ret

1. What registers is being saved to the stack? Why?

2. What instruction address gets saved to the stack? Why?

3. What is this function computing?

4. Fill in the top of this stack after the
function returns to main for
mystery(2, 5).

What is each value returned, in
order?

0x7fdf28
<ret address

in main>
main

mystery(2, 5)

ex

x86 recursive procedure practice problem

10

 mystery:
401106 mov $0x0,%eax
40110b test %edi,%edi
40110d jne 401110 <mystery+0xa>
40110f ret
401110 push %rbx
401111 mov %esi,%ebx
401113 sub $0x1,%edi
401116 call 401106 <mystery>
40111b movslq %ebx,%rsi
40111e add %rsi,%rax
401121 pop %rbx
401122 ret

1. What registers is being saved to the stack? Why?

2. What instruction address gets saved to the stack? Why?

3. What is this function computing?

0x7fdf28
<ret address

in main>
0x7fdf20 unknown rbx

0x7fdf18 0x40111b

0x7fdf20 5

0x7fdf18 0x40111b

main

mystery(2, 5)

ex

int mult(int x, int y) {
 if (x == 0) return 0;
 return y + mult(x - 1, y);
}

Multiplies its two arguments

0x40111b, return address after recursive call

%rbx, so that it is not overwritten in the recursive call

mystery(1, 5)

mystery(0, 5)
%rax: 0 %rax: 0

%rax: 5

%rax: 10

x86 short answer practice problems

11

ex
1. Which x86 instructions implicitly change the stack pointer? How do they change it?

2. What are some things defined by the word size? What is the word size we have been using for x86
in class?

3. Describe the general idea of a buffer overflow exploit in C code compiled to x86.

4. Describe how a child process’s memory is related to the memory of the parent process.

x86 short answer practice problems

12

ex
1. Which x86 instructions implicitly change the stack pointer? How do they change it?

2. What are some things defined by the word size? What is the word size we have been using for x86
in class?

3. Describe the general idea of a buffer overflow exploit in C code compiled to x86.

4. Describe how a child process’s memory is related to the memory of the parent process.

pushq
%rsp —= 8

popq
%rsp += 8

ret
%rsp += 8

call
%rsp -= 8

Register size, address size, pointer size
NOT instruction size (variable-width instruction size)

Buffer overflow occurs when code lacks bounds checking in writing untrusted input to a
destination region of memory that is too small. Buffer overflow attacks can overwrite the return
addresses on the stack to point to further exploit code.

The child process starts with a copy of the state of the parent’s memory. It is a private copy:
the child and the parent do not share memory once the child is created.

x86 arithmetic practice problem

13

long funmath1(long x, long y) {
 return 2*x + 4*y + 21;
}

Implement the above functions in x86 without addq or mulq.
You can use leaq and any other x86 instruction.

Recall: addressing modes can only multiply by 1, 2, 4, or 8.

ex

long funmath2(long x, long y) {
 return 6*x + 5*y + 21;
}

long funmath0(long x, long y) {
 return x + 4*y + 21;
}

x86 arithmetic practice problem

14

long funmath1(long x, long y) {
 return 2*x + 4*y + 21;
}

Implement the above functions in x86 without addq or mulq.
You can use leaq and any other x86 instruction.

Recall: addressing modes can only multiply by 1, 2, 4, or 8.

ex

long funmath2(long x, long y) {
 return 6*x + 5*y + 21;
}

long funmath0(long x, long y) {
 return x + 4*y + 21;
}

funmath0:
 leaq 21(%rdi,%rsi,4), %rax
 ret

funmath1:
 leaq (%rdi,%rsi,2), %rax
 leaq 21(%rax,%rax), %rax
 ret

funmath2:
 leaq (%rdi,%rdi,2), %rdx
 leaq (%rsi,%rsi,4), %rax
 leaq 21(%rax,%rdx,2), %rax
 ret

3 possible answers:

