CS 240
Foundations of Computer Systems

CS 240 Stage 2!
Hardware-Software Interface

Memory addressing, C language, pointers
Assertions, debugging
Machine code, assembly language, program translation
Control flow
Procedures, stacks
Data layout, security, linking and loading

https://cs.wellesley.edu/~cs240/

WELLESLEY

CS 240
Foundations of Computer Systems

Programming with Memory

the memory model

pointers and arrays in C

https://cs.wellesley.edu/~cs240/

WELLESLEY

Compiler/Interpreter

Software

Operating System

Program, Application

Programming Language

‘ [Instruction Set Architecture

N’

Hardware

Microarchitecture

Digital Logic

Solid-State Physics

Instruction Set Architecture (HW/SW)

memory

Large storage
Addresses, Locations

Computer

Byte-addressable memory = mutable byte array

. //>|:| 0XFF..F
Location / cell = element]

« Identified by unique numerical address -
« Holds one byte |2 .
v L 1|2 & Address = index
] % % « Unsigned number
HEERA * Represented by one word
] . 2 35 « Computable and storable as a value
S Y]
load EI 2 P
2
Operations: i: 0%00...0

« Load: read contents at given address
« Store: write contents at given address

Multi-byte values in memory

64-bit
Words Bytes Address
Example: 8 byte (64 bit) values — i Ox1F

Store across contiguous byte locations.

Alignment — 0x17

Multi-byte values start at addresses that are
multiples of their size 0x13

Bit order within byte always same. 0x06

Recall: byte ordering within larger value? 0403

Isan "int" stored at address 0x00000002 aligned?

Maybe

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app]

Isan "int" stored at address 0x00000002 aligned?

0%

0%

Maybe
0%

o Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Isan "int" stored at address 0x00000002 aligned?

Maybe

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

Endianness: details

most significant byte

In what order are the individual bytes of a multi-byte value
stored in memory?

least significant byte

A
Ve - N ,'7' N
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
2A B6 00 0B
Address | Contents least significant byte first
03 2 « low order byte at low address
Little End 02 B6 « high order byte at high address
01 00 « used by x86, ... and CS240!
00 0B
Big End
Address | Contents most significant byte first
03 0B « high order byte at low address
02 00 « low order byte at high address
01 B6 « used by networks, SPARG, ...
00 2a

Data, addresses, and pointers

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

For these slides, we’ll draw the bytes in this reverse o~ v o~
. . _>
order so that multi-byte values can be read directly * * * *
memory drawn as 32-bit values,
little endian order

Data, addresses, and pointers

address = index of a location in memory

pointer = a reference to a location in memory,
represented as an address stored as data

Let’s store the number 240 at address 0x20.
240,5=F0,4=0x00 00 00 FO

At address 0x08 we store a pointer to the contents at address 0x20.

At address 0x00, we store a pointer to a pointer.
The number 12 is stored at address 0x10.
Is it a pointer?
How do we know if values are pointers or not?
How do we manage use of memory?

0x24
00 | 00 {00 [FO |0x20
0x1C
0x18
0x14
00 {00 {00 jOC [0x10
0x0C
00 {00 {00 ;20 [0x08
0x04
00} 00} 00} 08]0x00

2N R

memory drawn as 32-bit values,
little endian order

C: Variables are locations

The compiler creates a map from variable name 2 location.
Declarations do not initialize!

int x; x @ 0x20
int v;

0x24
00 1 00 ;00 ;00 |Oox20 X
x = 0; @ 0x20 0x1C
0x18
0x14

0x3CD02700; 0x10
3C ;DO ;27 ;00

0x08
0x04
0x00

@ 0x20

3
%2
*2
*0

C: Variables are locations

The compiler creates a map from variable name 2 location.
Declarations do not initialize!

int x; x @ 0x20

int v;

0x3CD02700;

@ 0x20

@ 0x20

0x24

3C ;DO ;27 ;03]|0x20

X

0x1C
0x18
0x14
0x10

3C ;DO ;27 ;00

0x08
0x04
0x00

3
%2
*2
*0

C: Pointer operations and types

address = index of a location in memory
pointer = a reference to a location in memory, an address stored as data

Expressions using addresses and pointers:
&___ address of the memory location representing
a.k.a. "referenceto ___"
* __ contents at the memory address given by

a.k.a. "dereference

Pointer types:

* address of a memory location holding a
a.k.a. "areference to a "

C: Types determine sizes

Sizes of data types (in bytes)
Java Data Type C Data Type

boolean
byte
char
short
int

float

double
long

(reference)

bool

char

short int
int

float

long int
double
long long
long double
(pointer) *

32-bit word 64-bit word

1 1
1 1
2 2
2 2
4 4
4 4
4 8
8 8
8 8
8 16
4 8

address size = word size

& = address of
* = contents at

C: Pointer example

Declare a variable, p]

int* p;
ﬁ that will hold the address of a memory location holding an int]

Declare two variables, x and y, that hold ints,

int x = 5;
2; and store 5 and 2 in them, respectively.

int y =
Take the address of the memory -
p = &x; representing x

... and store it in the memory location representing p.
Now, “p points to x.”

Add 1to || the contents of memory at the address]
y = 1 + *p; given by the contents of the
memory location representing p
... and store it in the memory location representing y.] .

& = address of
* = contents at

C: Pointer example

C assighment:
8

Left-hand-side = right-hand-side;

@ 0x14

What is the type of *p?
What is the type of &x?

Whatis *(&y) ?
@ o0xl4,

= &x; 0x14 00 | 00 |00 |08

0x20
(=0x14) ox1cC
(=0x5) 0x18
00 ;00 | 00 | @D | 0x14 X
0x10
=1 + *o3 0x0C
0x08

@ 0x14

00 ;00 100 ;14

(=0x14)
@ 0x14 0x00

What is the result of printing the decimal values of “a" and “b" at the end of this code?

2,10
int a = 1;
int b = 5; 8,5
int* p = &a;
*p = *p + 1
a=a+1; 3,10
p = &b;

6,5
*p = *p * 2;

None of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

What is the result of printing the decimal values of “a" and “b" at the end of this code?

2,10
0%

a SN5)
int a = 1; ’ 0%
int b = 5;
int* p = &a; hilt 0%
*p = *p + ‘]"
a=a*+T1,; el 0%
p = &b; None of the above

! 0%
*p = *p % 2;

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

What is the result of printing the decimal values of “a" and “b" at the end of this code?

2,10
0%

A 3%5
int a =1, ’ 0%
int b = 5;
int* p = &a; hilt 0%
*p = *p + 1;
a=a*+T1l,; el 0%
p = &b; None of the above

! 0%
*p = *p * 2;

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

C: Pointer type syntax

Spaces between base type, *, and variable name mostly do not matter.

The following are equivalent:

int* ptr;
| see: "The variable ptr holds an address of an int in memory."

int * ptr;

int *ptr; more common C style

Looks like: "Dereferencing the variable ptr will yield an int."

Or "The memory location where the variable ptr points holds an int."

Caveat: do not declare multiple variables unless using the last form.
int* a, b; meansint *a, b; meansint* a; int b;

Arrays are adjacent memory locations
c: Arrays storing the same type of data.
. a is a name for the array’s base address,
Declaration:

int a[6]1; can be used as an immutable pointer.

element type
number of

elements

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

*3
*2
*7
*o

Arrays are adjacent memory locations
c: Arrays storing the same type of data.
larati a is a name for the array’s base address,
Declaration: int a[6]; can be used as an immutable pointer.

Indexing: a[0] = 0xf0; Address of a[i] is base address a

plus i times element size in bytes.

0x24
0x20 al5]
0x1C
0x18
0x14
0x10
00 00 00 FO |oxoc @[O0l
0x08
0x04
0%00

*3
*o
*7
*o

C: Arrays

Declaration:

Indexing:

int a[6];

a[0] = 0xf0;
a[5] = a[0];

Arrays are adjacent memory locations
storing the same type of data.

a is a name for the array’s base address,
can be used as an immutable pointer.
Address of a[1] is base address a

plus i times element size in bytes.

0x24
00 |00 |00 |FO|o0x20 2a[5]
0x1lC
0x18
0x14
0x10
00 ' 00 00 'FO |oxoc al0]
0x08
0x04
0%00

*3
%o
*7
*o0

C: Arrays
Declaration:

Indexing:

No bounds
check:

int a[6];

a[0] = 0xf0;
a[5] = a[0];

a[6] = OxBAD;

Arrays are adjacent memory locations
storing the same type of data.

a is a name for the array’s base address,
can be used as an immutable pointer.
Address of a[1] is base address a

plus i times element size in bytes.

00 | 00 | OB | AD | 0x24
00 100 .00 FO|ox20 al5]
0x1C
0x18
0x14
0x10
00 100 |00 'FO |oxoc 2l0]
0x08
0x04
0%00

*3
%o
*7
*o0

C: Arrays

Declaration:

Indexing:

No bounds
check:

int a[6];

a[0] = 0xf0;
a[5] = a[0];

a[6] = OxBAD;
a[-1] = O0xBAD;

Arrays are adjacent memory locations
storing the same type of data.

a is a name for the array’s base address,
can be used as an immutable pointer.
Address of a[1] is base address a

plus i times element size in bytes.

00 |00 | OB | AD | 0x24
00 .00 .00 FO|ox20 al5]
0x1lC
0x18
0x14
0x10
00 100 |00 'FO |oxoc 2l0]
00 00 '0B AD |0x08
0x04
0%00

*3
%o
*7
*o0

C: Arrays
Declaration:

Indexing:

No bounds
check:

Pointers:

equivalent{p -

int a[6];

a[0] = 0xf0;
a[5] = a[0];

a[6] = OxBAD;
a[-1] = O0xBAD;

int* p;
a;
p = &a[0];

Arrays are adjacent memory locations
storing the same type of data.

a is a name for the array’s base address,
can be used as an immutable pointer.
Address of a[1] is base address a

plus i times element size in bytes.

00 |00 | OB | AD | 0x24

00 00 00 F0 |o0x20 al5]
0x1lC

0x18

0x14

0x10

00 100 |00 'FO |oxoc 2l0]
00 00 '0B AD | 0x08

00 00 00 OCJo0x04 P
0x00

*3
%o
*7
*o0

C: Arrays

Arrays are adjacent memory locations
storing the same type of data.

a is a name for the array’s base address,

C: Arrays

Arrays are adjacent memory locations
storing the same type of data.

a is a name for the array’s base address,

Declaration: int a[6]; can be used as an immutable pointer. Declaration: int a[6]; can be used as an immutable pointer.
Indexing: a[0] = 0xf0; Address of a[1] is base address a Indexing: a[0] = 0xf0; Address of a[1] is base address a
a[5] = a[0]; lus i times element size in bytes. a[5] = a[0]; lus i times element size in bytes.
p Yy p Yy
No bounds a[6] = OxBAD; No bounds a[6] = OxBAD;
check: a[-1] = O0xBAD; check: a[-1] = O0xBAD;
Pointers: int* p; 00 ;00 ;0B AD |[0x24 Pointers: int* p; 00 ;00 ;0B AD |[0x24
equivalem{l.o = a; 00 :00 ;00 !FO |ox20 al5] equivalem{p = a; 00 :00 ;00 !FO |ox20 al5]
p = &a[0]; ox1lc p = &a[0]; oxlc
*p = 0xA; 0x18 *p = 0xA; 0x18
0x14 0x14
0x10 0x10
00 /00 ' 00 FO |oxoc al01] 00 ‘00 00 OA]oxoc 2al0]
00 ;00 0B |AD | 0x08 00 ;00 0B |AD | 0x08
00 ;00 00 ;0C | 0x04 p 00 ;00 (00 (0C | Ox04 P
0x00 0x00
AT AT
29 30
Arrays are adjacent memory locations Arrays are adjacent memory locations
c- Arrays storing the same type of data. c- Arrays storing the same type of data.
. .
larati a is a name for the array’s base address, larati a is a name for the array’s base address,
Declaration: int a[6]; can be used as an immutable pointer. Declaration: int a[6]; can be used as an immutable pointer.
Indexing: a[0] = 0xf0; Address of a[1] is base address a Indexing: a[0] = 0xf0; Address of a[1] is base address a
a[5] = a[0]; lus i times element size in bytes. a[5] = a[0]; lus i times element size in bytes.
p Yy p Yy
No bounds a[6] = OxBAD; No bounds a[6] = OxBAD;
check: a[-1] = OxXBAD; check: a[-1] = OxBAD;
Pointers: int* p; 00 ;00 ;0B AD |[0x24 Pointers: int* p; 00 ;00 ;0B AD |[0x24
equivalem{l.o = a; 00 :00 ;00 !FO |ox20 al5] equivalem{p = a; 00 :00 ;00 !FO |ox20 al5]
p = &a[0]; ox1lc p = &a[0]; ox1lc
*p = 0xA; 0x18 *p = 0xA; 0x18
0x14 0x14
cauivalent{PLL] = 0xB; 00 100 ;00 0B |0x10 cauivalent JPI11 = OxB; 00 :00 ;00 0B |0x10
qu *(p + 1) = 0xB; 00 100 | 00 ! 0A |oxoc 2l0] au *(p + 1) = 0xB; 00 100 |00 | 0A |oxoc 2l0]
00 ;00 0B |AD | 0x08 p=p+2; 00 ;00 0B |AD | 0x08

array indexing = address arithmetic
Both are scaled by the size of the type.

00 100 ;00 [0C|Jo0Ox04 P
0x00

*3
%o
*7
*o

array indexing = address arithmetic
Both are scaled by the size of the type.

00 /00 ;00 !0C|J0x04 P
0x00

*3
%o
*7
*o

C: Arrays

Arrays are adjacent memory locations
storing the same type of data.

a is a name for the array’s base address,

Declaration: int a[6]; can be used as an immutable pointer.
Indexing: a[0] = 0xf0; Address of a[i] is base address a
a[5] = a[ol; plus i times element size in bytes.
No bounds a[6] = OxBAD;
check: a[-1] = O0xBAD;
Pointers: int* p; 00 ;00 ;0B AD |[0x24
. uivalent{p = a; 00 {00 ;00 /FO |0x20 a[5]
q p = &a[0]; ox1lc
*p = 0xA; 0x18
0x14
valent JPLL] = 0xB; 00 ;00 (00 |0B |0x10
equivalenty « (o + 1) = oxB; 00 100 100 ' 0A|oxoc @[0]
p=p+ 2; 00 {00 (0B /AD | 0x08

array indexing = address arithmetic
Both are scaled by the size of the type.

00 |00 (00 ;14 JOx04 P
0x00

*3
*o
*7
*o

C: Arrays

Arrays are adjacent memory locations
storing the same type of data.

a is a name for the array’s base address,

Declaration: int a[6]; can be used as an immutable pointer.
Indexing: a[0] = 0xf0; Address of a[i] is base address a
a[5] = a[ol; plus i times element size in bytes.
No bounds a[6] = OxBAD;
check: a[-1] = O0xBAD;
Pointers: int* p; 00 ;00 ;0B AD |[0x24
. uivalent{p = a; 00 {00 ;00 /FO|0x20 a[5]
q p = &a[0]; oxlc
*p = 0xA; 0x18
00 |00 |00 |0C |0x14
valent JPLL] = 0xB; 00 ;00 (00 |0B |0x10
equivalenty w o + 1) = oxB; 00 100 100 ' 0A|oxoc 2@[0]
p=p+ 2; 00 (00 !0B [AD | 0x08

array indexing = address arithmetic
Both are scaled by the size of the type.

00 {00 (00 (14 Jox04 P
0x00

*3
*o
*7
*o

*p = a[l] + 1;

]
Assume p has typeint*. Are “p[2]=5" and “*(p+2)=5" equivalent? What about “p[2]=5"

and “*p+2=5"7?

Noj; No.

No; Yes.

Yes; No.

Yes; Yes.

"

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Assume p has typeint*.Are “p[2]=5" and “*(p+2)=5" equivalent? What about “p[2]=5"

and “*p+2=5"7?

Noj; No.

No; Yes.

Yes; No.

Yes; Yes.

"

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

Assume p has typeint *. Are “p[2]=5" and **(p+2)=5" equivalent? What about “p[2]=5"

and “*p+2=5"7?

Noj; No.

No; Yes.

Yes; No.

Yes; Yes.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

C: Array allocation
Basic Principle

T A[N];
Array of length N with elements of type T'and name A
Contiguous block of N*sizeof (T) bytes of memory

char string(12]; [TTTTTTTTTTT]

Use sizeof to determine
proper size in C.

X xllZ
int val[5]; | | | I | |
|] 1
X x+4 x+8 x+12 x+16 x+20
double a[3]; | |]]
x18 x+116)HIZA
char* p[3];
(orchar *p[31;) | I } | x36-64
)] XIS x+16 X+24

size depends on the
machine word size

C: Array access

Basic Principle
T A[N];
Array of length N with elements of type T'and name A
Identifier A has type T*

int val[s]; [0 T 2 T 4 T 8 1]
1 1]] 1
X xX+4 X+8 x+12 x+16 x+20
Expression Type Value

val[4] int 1
val int
val+l int
&val[2] int *
val[5] int
*(val+l) int

val + i int *

Representing strings

A C-style string is represented by an array of bytes (char).
— Elements are one-byte ASCII codes for each character.

— ASCIl = American Standard Code for Information Interchange

32 space | [48 0] [62 @] [e0 P | [o6 112)
33 ! 49 1 ffes Affsz a7 a | |3 q
34 " so 2|6 B[|82 R | [os b | [124 v
35 # s1 3|67 c| |83 s | [e9 c | |a1s s
36 $ 52 4|8 D |[|sa T | [w0 d | |16 t
37 % 53 s|les E||ss u | w1 e | 7 u
38 & sa 6|70 F||se v [|02 £ | |8 v
39 ' ss 7|71 6| |s7 w03 g | |11 w
40 (s6 8|72 H||se x| |04 h | [120 X
41) 57 9|73 1|89 v [[wos 1| fa22 y
42 * 8 |74 1|0z | |woe i | |22 z
43 + 9 5|5 k| o1 [] o7 k | |23 {
44 , 60 <||76 Loz \ [[wo8 1| fr2a |
45 - 61 =|[77 M| |93 1 | |09 m | [125)
46 . 52 >|[|78 N|[|a A | [0 n | |126 ~
47 / 63 |79 of s _ || o | |27 del

C: Null-terminated strings

C strings: arrays of ASCII characters ending with null character.

1‘ Why?

| 0x57 | 0x65 | 0x6C | 0x6C | 0x65 | 0x73 | 0x6C | 0x65 | 0x79 | 0x20 | 0x43 | 0x53 | 0x00 |

W' ‘e’ '1' '1' 'e' 's' 'l' 'e' 'y’ e 's' '\

Does Endianness matter for strings?

int string length(char str[]) {

C:*and []

C programmers often use * where you might expect []:

e.g., char*:

pointer to a char

pointer to the first char in a string of unknown length

int strcmp(char* a, char* b);

C:0vs. '\O0' vs. NULL

0 "\o'

Name: zero Name: null character
Type: int Type: char

Size: 4 bytes Size: 1 byte

Value: 0x00000000 Value: 0x00

Usage: The integer zero. Usage: Terminator for C strings.
NULL

Name: null pointer / null reference / null address

Type: void*

Size: 1 word (= 8 bytes on a 64-bit architecture)

Value: 0x00000000000000

Usage: The absence of a pointer where one is expected.

Address 0 is inaccessible, so *NULL is invalid; it crashes.

Is it important/necessary to encode the null character or the null pointer as 0x0?

What happens if a programmer mixes up these "zeroey" values?

Memory address-space layout

Addr
2N-1

Stackl
v

Heap

Statics

Literals

Text

Perm Contents Managed by
RW Procedure context Compiler
Dynamic Programmer,
RW v malloc/free, new/
data structures
GC
o~ Global variables/ Compiler/
static data structures Assembler/Linker
. . Compiler/
R String literals .
e Assembler/Linker
X Instructions ey

Assembler/Linker

Initialized

Run time

Run time

Startup

Startup

Startup

C: Dynamic memory allocation in the heap

Heap:

EETT T PP OCT PR O[O[OT]
— —

Allocated block Free block

Managed by memory allocator:

pointer to newly allocated block

of at least that size number of contiguous bytes required

N ¥

void* malloc(size t size);

void free(void* ptr);

\ pointer to allocated block to free

C: standard memory allocator

#include <stdlib.h>
void* malloc(size_ t size)
Allocates a memory block of at least size bytes and returns its address.

If memory error (e.g., allocator has no space left), returns NULL.
Rules:

Check for error result.

Cast result to relevant pointer type.

Use sizeof(...) to determine size.

void free(void* ptr)
Deallocates the block referenced by ptr,
making its space available for new allocations.

ptr must be amalloc result that has not yet been freed.
Rules:
ptr must be amalloc result that has not yet been freed.

Do not use *ptr after freeing.

C: Dynamic array allocation

defln? ZIP_LENGTH 5 :) zip | 0x7£edd2400dc0 | 0x7£££580dd938
int* zip = (int*)malloc(sizeof(int)*ZIP_LENGTH);
if (zip == NULL)“{ // if error occurred 1] o0x7fedd2400ddo
perror("malloc”); // print error message 8 | ox7fedd2400dcc
exit(0); // end the program 4 | 0x7fedd2400dc8
} 2 | 0x7fedd2400dc4
0 | 0x7fedd2400dc0
zip[0] = 0;
zip[l] = 2;
zip[2] = 4;
zip[3] = 8;
zip[4] = 1;

printf("zip is");
for (int i = 0; i < ZIP_LENGTH; i++) {
printf(" %d", zip[i]);

A oJz2]a]s]
zip +% +4 +8 +12 +16 +20

}
printf("\n");

free(zip);

C: Array of pointers to arrays of ints

int** zips = (int**)malloc(sizeof(int*) * 3);

zips[0] = (int*)malloc(sizeof(int)*5);
int* zip0 = zips[0];

zip0[0] = 0
zips[0][1]
zips[0][2]
zips[0][3]
zips[0][4]

2;
- :f Why terminate
=1; with NULL?

zips[1]

zips[1][
zips[1][1]
zips[1][2]
zips[1][3]
zips[1][4]

(int*)malloc(sizeof (int)*5);

N

w20

Zips L___:::L-4 0x10004380 |0x10008900 |0xoooooooo|

— ~N
1

zips[2] = NULL;

-]
]
N
- |
]
[]

Why

no NULL?

Zip code

zips
0x10004380 [0x10008900 [0x00000000

— ™~

[ofle o= Q- fofofe]]

// return a count of all zips that end with digit endNum

int zipCount(int* zips[], int endNum) {

http://xkcd.com/138/

MAN, | SUCK AT THIS GAME.
CAN YOU GIVE ME
A FEW POINTERS?

0x3A28213A

Ox63393292C,

Ox7363682E.
| HATE YOU. /

a3

C: scanf reads formatted input

int valj; Declared, but not initialized.
Holds anything.

scanf("%d", &val);

Store it in memory
at this address.

OX7FFFFFFFFFFFFF3C
OX7FFFFFFFFFFFFF38
OxX7FFFFFFFFFFFFF34

Read one int
in decimal, format
from input.

val| CA FE 12 34

Store in memory at the address
given by the address of val:
store input @ 0x7F..F38.

C: Classic bug using scanf

val

Read one int

int val; ﬁ

scanf("%d",

in decimal, format
from input.

Declared, but not initialized.
Holds anything.

BA D4

FA CE

CA FE

12 34

val);
Store it in memory
at this address.

O0X7FFFFFFFFFFFFF3C
OX7FFFFFFFFFFFFF38
OxX7FFFFFFFFFFFFF34

0x00000000BAD4FACE

] Store in memory at the address
given by the contents of val
(implicitly cast as a pointer):
store input @ 0xBAD4FACE.

Best case: /! crash immediately
with segmentation fault/bus error.

Bad case: @ silently corrupt data
stored @ 0xBAD4FACE,

fail to store input in val,

and keep going.

Worst case: M) .7

program does literally anything.

C: Memory error messages

11: segmentation fault ("segfault"”, SIGSEGV)
accessing address outside legal area of memory
10: bus error (SIGBUS)
accessing misaligned or other problematic address

More to come on debugging!

OKAY, HUMAN. YOU KNOW WHEN YOURE | AND SUDDENLY YOU
HOH? I} FALLING ASLEER AND WISSTER, STUMBLE,
{UH? YOU IMAGINE. YOURSELF | AND JOLT AWAKE?
BERORE YOU WALKING OR YEA!
HIT COMPILE; W SOMETRING, P! P
LISTEN Up.
http://xked.com/371/

WELL, THATS \HaT A
SEGFAULT FEELS LIKE.

3
DOUBLE - CHECK YOUR
DRMV POINTERS, OKAY?

 Sul

C: Why?

Why learn C?

« Think like actual computer (abstraction close to machine level) without dealing
with machine code.

» Understand just how much Your Favorite Language provides.

« Understand just how much Your Favorite Language might cost.

» Classic.

o Still (more) widely used (than it should be).

« Pitfalls still fuel devastating reliability and security failures today.

Why not use C?
« Probably not the right language for your next personal project.
« It "gets out of the programmer's way” ... even when the programmer is unwittingly
running toward a cliff.
« Advances in programming language design since the 70’s have produced languages
that fix C's problems while keeping strengths.

