
CS 251 Fall 2019
Principles of Programming Languages
Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

The Plan

1 Plan

Devices (transistors, etc.)

Solid-State Physics

Digital Logic

Microarchitecture

Instruction Set Architecture

Operating System

Programming Language

Compiler/Interpreter

Program, Application

Welcome to

CS 240:
Foundations of

Computer
Systems!

2

3

Your lecture instructor: Alexa VanHattum

- New to Wellesley this year!
- Research focus:

programming languages &
systems

Before Wellesley:
- PhD in Computer Science at Cornell
- Software engineer for Apple health (heart monitoring)

- THIS CLASS one of the most helpful across industry and research

Note: you can call me “Alexa”, “Prof. Alexa”, or “Prof. VanHattum”

Today’s preview

What is CS 240?

Why take CS 240? (in brief)

How does CS 240 work? (in brief)

2
3

1

4

CS 111
• How do you use programming to solve a problem?

• How do you structure a program?

5

A BIG question is missing…

• How do you know it is correct or efficient?

• How hard is it to solve a problem?

• How is computation expressed?

• What does a program mean?

• ...

, 230, 231, 235, 251:

?
circuitboard image: CC-BY-NC-SA ifixit.com

1

6

Plan

Devices (transistors, etc.)

Solid-State Physics

Ha
rd

w
ar

e

Digital Logic

Microarchitecture

Instruction Set Architecture

Operating System

Programming Language

Compiler/Interpreter

Algorithm, Data Structure, ApplicationCS 111, 230,
231, 235, 251

So
ft

w
ar

e

7

CS 240

CS 240

Plan

Compiler/Interpreter

Devices (transistors, etc.)

Solid-State Physics

Digital Logic

Microarchitecture

Instruction Set Architecture

Operating System

Programming Language

Algorithm, Data Structure, Application

Big Idea:
Abstraction

interface
implementation

Layers manage
complexity.

8

Big Idea: Abstraction
with a few recurring subplots

Simple, general interfaces:
Hide complexity of efficient implementation.
Make higher-level systems easy to build.

9

0s and 1s,
electricityRepresentation of data and programs

compilers,
assemblers,

decoders
Translation of data and programs

branches,
procedures,

operating
system

Control flow within/across programs

Plan

Physical implementation
with circuits and electricity.

Ha
rd

w
ar

e

Desired computation
in a programming language

Hardware/Software Interface

So
ft

w
ar

e

Abstraction!

10

CS 240 in 3 acts

1. Hardware implementation
From transistors to a simple computer

(4-5 weeks each)

11

2. Hardware-software interface
From instruction set architecture to programming in C

*x = malloc(…);

MOV x9, x10
ADD x12, x12, #1

3. Abstraction for practical systems
Memory hierarchy
Operating system basics
Higher-level languages and tools

Machine Instructions
1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s

12

Hardware

 00000010100010101100100000010000

(adds two values and stores the result)

machine
code

program

Instruction Set Architecture specification

Assemblers and Assembly Languages
1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s

13

Hardware
assembly
program

Assembly Language specification

Assembler

addl %eax, %ecx 00000010100010101100100000010000

machine
code

program

Compile time Run time

Higher-Level Programming Languages
1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s

14

addl %eax, %ecx 00000010100010101100100000010000

x = x + y;

Hardware
assembly
program Assembler

machine
code

program

high-level
language
program

Compiler

Programming Language specification

More and more layers…

• Operating systems
• Virtual machines
• Hypervisors
• Web browsers
• …

1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s

15

Microarchitecture (Implementation of ISA)

ALURegisters Memory
Instruction
Fetch and
Decode

Computer

16

I just like to program.
Why study the implementation?2

17

I just like to program.
Why study the implementation?

Most system abstractions "leak."

2

18

Their performance Their correctness Their security

implementation
details

Abstraction!

Implementation details affect your programs:

Performance

x / 973 x / 1024

19 20

21 22

void copyji(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (j = 0; j < 2048; j++)
 for (i = 0; i < 2048; i++)
 dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (i = 0; i < 2048; i++)
 for (j = 0; j < 2048; j++)
 dst[i][j] = src[i][j];
}

several times faster
due to hardware caches

Performance

x / 973 x / 1024

23

Correctness

24

int ≠ integer
float ≠ real

"... a Model 787 airplane … can lose all
alternating current (AC) electrical power …
caused by a software counter internal to the
GCUs that will overflow after 248 days of
continuous power. We are issuing this AD to
prevent loss of all AC electrical power, which
could result in loss of control of the airplane."
--FAA, April 2015

Exploded due to cast of
64-bit floating-point number
to 16-bit signed number.
Overflow.

Boeing 787, 2015

Security

25

Why take CS 240?

26

Learn how computers execute programs.
Deepen your appreciation of abstraction.
Improve your critical thinking skills.

Become a better programmer:
Think rigorously about execution models.
Identify limits and impacts of abstractions and representations.
Learn to use software development tools.

Foundations for:
Compilers, security, computer architecture, operating systems, …

Have fun and feel accomplished!

CS 251 Fall 2019
Principles of Programming Languages
Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

https://cs.wellesley.edu/~cs240/

Long but necessary!3

27

