WELLESLEY

CS 240
Foundations of Computer Systems

Sequential Logic
and State

Output depends on inputs and stored values.
(vs. combinational: output depends only on inputs)

Latch: CC-BY Rberteig@flic

Elements to store values: latches, flip-flops, registers,
memory

https://cs. ley.edu/~cs240/

Motivation

Control Lines

|

Operand A =)

mmp Result

Operand B)

l

Condition Codes

Now that we have ALUs to perform
computations, how do we store the

results?

How do we calculate different results
over time?

Answer: we need circuits that depend not
just on inputs, but also on prior state
= Sequential Logic

Can you think of an example from lab of a sequential circuit you used?
Hint: previous button pushes are past state.

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Example from previous lab

Processor: Data Path Components

Instruction

Fetch and Registers
Decode

Goal for this section

Design a circuit state that holds a state over time

¢ We should be able to set the value to 0 or 1
¢ We should be able to read the value off the circuit

First attempt: Unstable circuit

Q {> Q «<——HowcanQ=0Q'?

Have this issue with any odd number of inverters in a loop.

Second attempt: stable circuit?

Things are more sensible
with an even number of
inverters in a loop.

Suppose we somehow geta 1 (or a 0?) on here.

Now stable, but how do we set the value?

Bistable latches

Things are more sensible
with an even number of
inverters in a loop.

Suppose we somehow get a1 (or a 0?) on here.
T /[Q

’ Change to a 2-input gates so that we

can set updated values to be stored
0 0
Q D Q

SR latch

1 0
any any
any any
any any

Violates invariant that

— X
Qand Q' are inverses!

L
(stable) | (stable)
0 0 0 1 0
0 O
1 0
0 1
1 1

O O R =
O = OO R

10

SR latch

Move from the
circuit we built to
the canonical form

S R R
qQ Q Q
Z Q
S

SR latch

R i O Q
: 1)
s a S @ a

Figure 3.3 SR latch schematic

Meets our goals: e Aple to set the value to O or 1

¢ Able to read the value off the circuit

How do we set Q to 1?

S=0;R=0

S=1;R=0

_ S=0;R=1
s D' Q

Figure 3.3 SR latch schematic
S=1;R=1

None of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

How do we set Q to 1?

How do we set Q to 1?

S=0;R=0
0%

S=1;R=0
0%

m‘ S=0;R=1
0%
ﬂ —_ S=1;R=1
O Q 0%
s—IND

Figure 3.3 SR latch schematic hlonelofitheabove 0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

S=0;R=0

S=1;R=0

g Q

m‘ S=0;R=1
ﬂ _ S=1;R=1
s—No-a

Figure 3.3 SR latch schematic honelofitheabove

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

SR latch

R Q i Dc Q

Figure 3.3 SR latch schematic

Meets our goals: e Aple to set the value to O or 1
¢ Able to read the value off the circuit

But: ¢ AmbiguouswhenS=1andR=1
¢ No distinction between new value and timing

D latch

Goals:
e Only 1 bit for data
e Control over timing

if C =0, then SR latch stores current value of Q.

if C=1, then D flows to Q:
ifD=0,thenR=1andS=0,Q=0
ifD=1,thenR=0andS=1,Q=1

Notes:
« Data bit D replaces S & R: it’s the bit value we want to store when Clock = 1
« Internally, Data bit D prevents bad case of S=R=1
« This logic is level-triggered; as long as Clock = 1, changes to D flow to outputs

Time matters!

Assume Q has an initial state of 0

In general: clocks

Clock: free-running signal
with fixed cycle time = clock period = T.

Clock frequency = 1 / clock period
/ Falling edge
. N -

Rising edge

Clock period

A clock controls when to update a sequential logic element's state.

Aside: “Clock frequency”

Microprocessor Clock Speed

10! Logarithmic Plot
0 =

Clock frequency
=1/period=1/s=Hz

10" =

(Hz)

Typical CPU: 3-4 GHz 10° =

10" =

[1 1
1975 1980 1985 1990 1995 2000 2005 2010 2015

10° = 1 1 [1 1

Doubling time: 3 years Year

1
2020

Synchronous systems

Inputs to state elements must be valid on active clock edge.

State State
element Combinational logic element
d 2

| L

D flip-flop with falling-edge trigger

D——b Q D al——Q

! D latch D latch
3 (C F Ce Qs I — Q
o 3
Qstill=Q
Assume L follower stores

Q= Quow [| ‘/ = Qo a5 Q

Clock 4|~ "
leader stores
D = Qpext as |

Q is NOW Qeyt

Time matters! D flip-flop with falling-edge trigger

Q

Assume Q and E have an initial state of 0

Reading and writing in the same cycle

L Ip o) {>

D Flip-Flop
c Q

Assume Q is initially 0.
Clock

Moral: It’s OK to use the current output Q of a flip-flop as
part of the the next data input D to the same flip-flop.

D flip-flop = one bit of storage

— D Qr—
D Flip-Flop
c Q

The bit value of D when C has a falling edge is
remembered at Q until the next falling edge of C.

Registers

Instruction
Fetch and
Decode

Registers

Assembly code (later this semester):

addq %rdi,%rsi

. *Half a byte!
A 1-nybble* register : .
ny & Register file
(a 4-bit hardware storage cell)
Write value 0 D Q -
D Flip-Flop 4-bit ——>>| Register address #1
N a 5> register >
1 D Q ¢ —s»| Register address #2 Read data 1
O Fliof] T r Read ports
1p-FIO!
> c P pa Clock line may be indicated Read data 2 Why 2?
ead data 2 [—— 7>
0 D Q —>| Register address #3
D Flip-Flop
L I>c q —>> Write data
1 D Q Write port Write?
D Flip-Flop T 0 = read r = log, number of registers
— C Q = wri w = bits in word
Shared clock 1= write
write control

Clock

Array of registers, with register selectors, write/read control,
input port for writing data, output ports for reading data.

Register address #1 Register address #1
(log, k bits) (log, k bits)
Register 0 Register 0
Register 1 Register 1 M
Read po rts | \» Data read from Read po rts u | \» Data read from
Remictor k-2 n register address #1 Remietor k-2 X n register address #1
(data out) ¢ (nbits) (data out) ¢ (nbits)
Register k- 1 Register k- 1
Register address #2 | Register address #2
(log; k bits) (log; k bits)
-
\» Dataread from A u \» Dataread from
n register address #2 X n register address #2
(n bits) (n bits)
29 30
Write port Write port
. write control . write control
(data in) clock (data in) clock
? Register 0 ? Register 0
m e L . _to-2m D
Address of register __|,| mto-2 Address of register __|,| mto-2
to write to decoder —C to write to decoder ¥:Di c
(log; k bits) k-2 Register 1 (log; k bits) k-2 Register 1
k-1 -P k-1f D
Register k- 2 Register k- 2
D D
Register k- 1 Register k- 1
Data to write N o Data to write D
(n bits) n (n bits) n
31 32

Registers summary

[P —
j m
e—

* For our purposes: implemented with flip-flops
* Very fast access
o Limited in size:
¢ Need an m-to-2mdecoder
® CPUs typically have ~10s of words of register storage 33

Registers summary

U

o We'll think about at a higher level of abstraction
¢ Designed to handle a much larger amount of data
® CPUs can have millions-billions of words of memory storage

RAM (Random Access Memory)

Jo

Data In
log, A
—+— Address . .
« Ais number of words in RAM
A x_B RAM . Speufy th.e desired word by e.m a‘ddress of size log, A
Write « Bis the width of each word (in bits)
J——
1| Enable
Data Out

fo

16 x 4 RAM

4-bit
address
1101 —|
4to 16
decoder

data
out

