
CS 251 Fall 2019
Principles of Programming Languages
Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Sequential Logic
and State

Output depends on inputs and stored values.
(vs. combinational: output depends only on inputs)

Elements to store values: latches, flip-flops, registers,
memory

1

Latch: CC-BY Rberteig@flickr

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Motivation

2

Operand A

Operand B

Result

Control Lines

Condition Codes

ALU

Now that we have ALUs to perform
computations, how do we store the
results?

How do we calculate different results
over time?

Answer: we need circuits that depend not
just on inputs, but also on prior state
= Sequential Logic

3

Example from previous lab

4

ALU

Processor: Data Path Components

5

Registers Memory
Instruction
Fetch and
Decode

12 3

6

Goal for this section

Design a circuit state that holds a state over time

• We should be able to set the value to 0 or 1
• We should be able to read the value off the circuit

First attempt: Unstable circuit

7

QQ How can Q = Q’ ?

Have this issue with any odd number of inverters in a loop.

8

Suppose we somehow get a 1 (or a 0?) on here.Things are more sensible
with an even number of
inverters in a loop.

Q Q

Q = 0 Q = 1 Q = 1 Q = 0

or

Second attempt: stable circuit?

Now stable, but how do we set the value?

Bistable latches

9

Q Q
00

Things are more sensible
with an even number of
inverters in a loop.

Suppose we somehow get a 1 (or a 0?) on here.

Q Q

Change to a 2-input gates so that we
can set updated values to be stored

SR latch

10

Q Q
RS

Set Reset

S R Qprev Q’prev Qnext
(stable)

Q’next
(stable)

0 0 0 1 0 1
0 0 1 0 1 0
1 0 any any 1 0
0 1 any any 0 1
1 1 any any 0 0

Violates invariant that
Q and Q’ are inverses!

SR latch

11

Q Q
RS

Move from the
circuit we built to
the canonical form

Q

QR

S

Q

Q
R

S

R

S Q

Q R

S Q

Q

SR latch

12

R

S Q

Q

Meets our goals: • Able to set the value to 0 or 1
• Able to read the value off the circuit

13

14

15

SR latch

16

R

S Q

Q

Meets our goals: • Able to set the value to 0 or 1
• Able to read the value off the circuit

But: • Ambiguous when S = 1 and R = 1
• No distinction between new value and timing

D latch

if C = 0, then SR latch stores current value of Q.
if C = 1, then D flows to Q:
 if D = 0, then R = 1 and S = 0, Q = 0
 if D = 1, then R = 0 and S = 1, Q = 1

17

D

C

R

S

Q

Q

Clock

Data bit

Notes:
• Data bit D replaces S & R: it’s the bit value we want to store when Clock = 1
• Internally, Data bit D prevents bad case of S = R = 1

• This logic is level-triggered; as long as Clock = 1, changes to D flow to outputs

Goals:
• Only 1 bit for data
• Control over timing

Time matters!

18

D

C

Q

Assume Q has an initial state of 0

exD

C

R

S

Q

Q

In general: clocks
Clock: free-running signal
with fixed cycle time = clock period = T.

Clock frequency = 1 / clock period

A clock controls when to update a sequential logic element's state.

19

Clock period

Falling edge

Rising edge

20

Clock frequency
 = 1 / period = 1 / s = Hz

Typical CPU: 3-4 GHz

Aside: “Clock frequency”

Synchronous systems
Inputs to state elements must be valid on active clock edge.

21

State
element

1

State
element

2
Combinational logic

D flip-flop with falling-edge trigger

22

D

C

QEQLDL

CL

D latch

QL

QFDF

CF

D latch

QF Q

leader follower

Clock
leader stores
D = Qnext as E

follower stores
E = Qnext as Q

Q still = Qnow

Q is now Qnext

Time

Assume
Q = Qnow

Time matters!

23

D

C

E

Q

Assume Q and E have an initial state of 0

exD flip-flop with falling-edge trigger

Reading and writing in the same cycle

24

Assume Q is initially 0.
QD

C
D Flip-Flop

QClock

Moral: It’s OK to use the current output Q of a flip-flop as
part of the the next data input D to the same flip-flop.

D flip-flop = one bit of storage

25

QD

C
D Flip-Flop

Q

The bit value of D when C has a falling edge is
remembered at Q until the next falling edge of C.

Registers

26

ALURegisters Memory
Instruction
Fetch and
Decode

2

 addq %rdi,%rsiAssembly code (later this semester):

A 1-nybble* register
(a 4-bit hardware storage cell)

27

Write value

Clock

0

1

0

1

QD

C
D Flip-Flop

Q
QD

C
D Flip-Flop

Q
QD

C
D Flip-Flop

Q
QD

C
D Flip-Flop

Q

*Half a byte!

C

4-bit
register4 4

Clock line may be indicated

Shared clock

write control

Register file

28

Read ports
Why 2?

Read register selector 1

Read register selector 2

Write register selector

Write data

Write?

Read data 1

Read data 2

r

r

r

w

w

w

r = log2 number of registers
w = bits in word

Array of registers, with register selectors, write/read control,
input port for writing data, output ports for reading data.

Write port
0 = read
1 = write

Register address #1

Register address #2

Register address #3

Read ports
 (data out)

29

Register k - 2

Register k - 1

Register 0

Register 1

Register address #1
(log2 k bits)

Register address #2
(log2 k bits)

register address #1
(n bits)

Data read from

register address #2
(n bits)

Data read from
n

n

30

Register k - 2

Register k - 1

Register 0

Register 1

Register address #2
(log2 k bits)

register address #1
(n bits)

Data read from

register address #2
(n bits)

Data read from
n

nRead ports
 (data out)

Register address #1
(log2 k bits)

31

Address of register
to write to
(log2 k bits)

write control
clock

k - 2

k - 1

m-to-2m

decoder

Register k - 2

Register k - 1

Register 0

Register 1

n

Write port
 (data in)

Data to write
(n bits)

32

Address of register
to write to
(log2 k bits)

write control
clock

k - 2

k - 1

m-to-2m

decoder

Register k - 2

Register k - 1

Register 0

Register 1

n

Write port
 (data in)

Data to write
(n bits)

33

Registers summary

ALURegisters Memory
Instruction
Fetch and
Decode

2

• For our purposes: implemented with flip-flops
• Very fast access
• Limited in size:

• Need an m-to-2m decoder
• CPUs typically have ~10s of words of register storage

34

Registers summary

ALURegisters Memory
Instruction
Fetch and
Decode

• We’ll think about at a higher level of abstraction
• Designed to handle a much larger amount of data

• CPUs can have millions-billions of words of memory storage

Memory

3

RAM (Random Access Memory)

35

A B

B

B

log2 A

• A is number of words in RAM
• Specify the desired word by an address of size log2 A
• B is the width of each word (in bits)

16 x 4 RAM

36

4 to 16
decoder

data
out

1101

4-bit
address

