
CS 251 Fall 2019 
Principles of Programming Languages 
Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Threads

Motivation: are processes all we need for useful concurrency? 
Threads: Concurrency with shared memory

1

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/


Why do we need concurrency? 

M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. BaKen.  
New plot and data collected for 2010-2017 by K. Rupp 2



Advantages/disadvantages of concurrent programs

Advantages Disadvantages
•More responsive 

•Interacting with IO 

•Higher performance 

•Computers have multiple cores 

•Make progress when one task waits

•New kinds of bugs 

•Race conditions 

•Deadlock 

•Much more difficult to test, debug

3



Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/bash
Data

Heap

fork():
parent child

Code/state of shell process.

Copy of code/state 
of shell process.

Code/state of shell process.

1

2 2

Recall: processes create private copies of program state

Why might we want 
shared access to 
program state? 

4



• Core idea: allow shared memory, but distinct/concurrent execution

Threads: distinct execution, shared memory

Programs are just data: what data tracks execution?

Stack

Code: /usr/bin/bash
Data

Heap

Threads need distinct stacks & registers
5



Threads: distinct execution, shared memory

Stack

Code: /usr/bin/bash
Data

Heap

Stack • OS and languages generally allow processes to run two or 
more functions simultaneously via threading. 

• The stack segment is subdivided into 1 stack per thread 

• The thread manager time slices and between threads 

• Threads often called “lightweight processes” 

• Each thread maintains its own stack, but all threads share the 
same text, data, and heap segments

6



Processes vs. Threads: what is shared?

Processes Threads

Stack Not shared (private copies) Not shared (subdivided)

Registers Not shared (kernel tracks) Not shared (kernel tracks)

Code (instruction memory) Shared Shared

Heap (dynamic memory) Not shared (private copies) Shared

A thread is an independent execution sequence within a single process, 
with shared dynamic memory

7



Processes vs. threads

Threads Processes
•Easier coordination, operating on shared data 

•Lower communication overhead

•Support for distinct programs/code (exec) 

•Built-in memory protection

•Since threads have no memory protection, race 

conditions and deadlocks more likely 

8



Race condition 

9

x = x + 1 x = x * 2

Thread 1 Thread 2

ex

Assume x = 2  before this code runs. 

What possible values could x have after this code runs?



• ANSI C doesn't provide native support for threads.  
• But pthreads, which comes with all standard UNIX distributions, provides 

thread support. 
• The primary pthreads data type is the pthread_t, which is a type used 

to manage the execution of a function within its own thread of 
execution.  
• The pthreads functions we'll need: pthread_create and pthread_join. 

pthreads library

10



Examine introverts!

11



Key points of introverts

• Introverts declares an array of six pthread_t handles.  
• The program initializes each pthread_t (via pthread_create) by 

installing recharge as the function each pthread_t should 
execute.  
• All thread routines take a void * and return a void *. 
• The pthread thread manager's attention, and we have very little 

control over what choices it makes when deciding what thread to run 
next.

12



pthread_join waits

• pthread_join is to threads what waitpid is to processes.  
• The main thread of execution blocks until the child threads all exit. 

The second argument to pthread_join can be used to catch a thread 
routine's return value.  
• If we don't care to receive it, we can pass in NULL to ignore it. 

13



Sharing data

• Sharing data can be complicated and dangerous in concurrent 
execution, but often necessary.  
• Concurrent programming often makes use of specific tools to control 

how data is shared between threads 
• Lockig/mutexes 
• Semaphores 
• Condition variables 
• Etc.

14



Examine robberBaronsBroken!

15



Something is wrong!

• How do we know?  
• Printing is out of order at the end 
• Negative value for the stash? 

• Multiple threads are modifying the global variable stash 

• Is it possible for two threads to evaluate stash > 0 as True with only $10000 left 
and then both subtract from stash? 
• Yep!  Say thread A evaluates stash > 0 and then the thread manager switches to thread 

B before thread A subtracts the steal money from the  stash. 
• Thread B executes fully bringing the stash to $0.  
• Thread A resumes execution and subtracts its $10000 bringing the total to -$10000. 
• Yikes!

16



Mutexes

• A mutex is a mutual exclusion object. 
• It is a locking mechanism to protect shared data or critical regions of code so 

that only one thread can be permitted access. 
• Here: protect the stash so that only one robber can modify it at a given time. 
• We declare a mutex with pthread_mutex_t. 
• To lock a piece of code, we use pthread_mutex_lock(). 
• When a thread tries to acquire a lock, it will either take the lock if it is not being 

currently used or it will wait until the lock becomes available. 

• To unlock a piece of code, we use pthread_mutex_unlock(). 
• Only the thread that holds a lock can unlock it.

17



Examine robberBarons!

18


