
CS 251 Fall 2019
Principles of Programming Languages
Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Virtual Memory
Process Abstraction, Part 2: Private Address Space

Motivation: why not direct physical memory access?
Address translation with pages

Extra benefits: sharing and protection

Memory as a contiguous array of bytes is a lie! Why?

1

Problems with physical addressing

2

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data

8: ...

4

Problem 1: memory management

3

Main memory

What goes
where?

stack
heap
code

globals
…

Process 1
Process 2
Process 3
…
Process n

×

Also:
Context switches must swap out entire memory contents.
Isn't that expensive?

Problem 2: capacity

4

64-bit addresses can address
several exabytes

(18,446,744,073,709,551,616 bytes)

?

1 virtual address space per process,
with many processes…

Physical main memory offers
a few gigabytes

(e.g. 8,589,934,592 bytes)

(To scale with 64-bit address space,
you can't see it.)

Problem 3: protection

5

Physical main memory

Process i

Process j

Problem 4: sharing
Physical main memory

Process i

Process j

Solution: Virtual Memory (address indirection)

6

Physical memory

Vi
rt

ua
l a

dd
re

ss
 sp

ac
e

Process 1

Process n

virtual-to-physical

mapping

virtual
addresses

physical
addresses

virtual
addresses

Single physical address space
managed by OS/hardware.

Vi
rt

ua
l a

dd
re

ss
 sp

ac
e

data

data

Indirection

Direct naming

Indirect naming

7

"2"

"x" 2

What if we move Thing?

Thing

7

0
1

2

3

6

5

4
What X
currently
maps to

"2"

"2"

"x"
"x"

"x"

(it's everywhere!)
Tangent: indirection everywhere

• Pointers
• Constants
• Procedural abstraction
• Domain Name Service (DNS)
• Dynamic Host Configuration Protocol (DHCP)
• Phone numbers
• 911
• Call centers
• Snail mail forwarding
• …

8

“Any problem in computer science can be solved by adding another level of indirection.”
–David Wheeler, inventor of the subroutine, or Butler Lampson

Another Wheeler quote? "Compatibility means deliberately repeating other people's mistakes."

y

"x"

Virtual addressing and address translation

9

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data

8: ...

CPU
Virtual address

(VA)

CPU Chip

44100

Memory Management Unit
translates virtual address to physical address

Page-based mapping

10

Physical
Address Space

Physica
l Page

0
Physica
l Page

1

…
Physica
l Page
2p - 1

0

2m - 1

Virtual
Address Space

Virtual
Page

0
Virtual
Page

1

…
Virtual
Page
2v - 1

0

2n - 1

Virtual
Page

2
Virtual
Page

3

fixed-size, aligned pages
page size = power of two

Map virtual pages
onto physical pages.

Some virtual pages do not fit!
Where are they stored?

Cannot fit all virtual pages! Where are the rest stored?

11

Physical Memory
Address Space

Physica
l Page

0
Physica
l Page

1

…
Physica
l Page
2p - 1

0

2m - 1

Virtual Memory
Address Space

Virtual
Page

0
Virtual
Page

1

…
Virtual
Page
2v - 1

0

2n - 1

Virtual
Page

2
Virtual
Page

3 1. On disk if used

2. Nowhere if not (yet?) used

virtual address space
usually much larger than
physical address space

Virtual Memory

Virtual memory: cache for disk?

12

DiskMain
Memory

L2
unified
cache

L1
I-cache

L1
D-cache

CP
U Reg

2 B/cycle8 B/cycle16 B/cycle 1 B/30 cyclesThroughput:
Latency: 100 cycles14 cycles3 cycles millions

~4 MB

32 KB

~8 GB ~500 GB

Example system

Cache miss penalty
(latency): 33x

Memory miss penalty
(latency): 10,000x

SRAM DRAM

solid-state "flash"
or

spinning
magnetic platter.

Not drawn to scale!

Address translation

13

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data

8: ...

CPU
Virtual address

(VA)

CPU Chip

44100

Page table
array of page table entries (PTEs)
mapping virtual page to where it is stored

14

Physical pages
(Physical memory)

Swap space
(Disk)

VP 7

VP 4

PP 0

VP 2

VP 1

PP 3

null

null

page table

0
1

0

0
1
1
0
1

Valid
Physical Page Number

or disk address
PTE 0

PTE 7

Memory resident,
managed by HW (MMU), OS

VP 3

VP 6

Virtual memory benefits:
Simple address space allocation

Process needs private contiguous address space.

15

0

N-1

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

PP 9

Process 1:
Physical Address Space (DRAM)

Process 2:

Virtual Address Spaces

Virtual memory benefits:
Protection:

All accesses go through translation.
Impossible to access physical memory not mapped in virtual address space.

Sharing:
Map virtual pages in separate address spaces to same physical page (PP 6).

16

Process 1:
Physical Address Space (DRAM)

0

N-1
(e.g., execute-only
library code: libc)

Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Virtual Address Spaces

Virtual memory benefits:
Memory permissions

17

Process 1: Physical Page NumWRITE EXEC
PP 6NoNo
PP 4No Yes
PP 2Yes

Process 2:

No

READ
Yes

No
Yes

WRITE EXEC
PP 9Yes No
PP 6NoNo

PP 11Yes No

READ

Yes
No

VP 0:
VP 1:
VP 2:

VP 0:
VP 1:
VP 2:

Physical
Address Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11

Yes
Yes
Yes

Yes
Yes
Yes

Valid

Valid Physical Page Num

permission bits

Page Table

Page Table

permission bits

MMU checks on every access.
Exception if not allowed.

Yes

Summary: virtual memory
Programmer’s view of virtual memory

System view of virtual memory

18

Each process has its own private linear address space
Cannot be corrupted by other processes

Uses memory efficiently (due to locality) by caching virtual
memory pages
Simplifies memory management and sharing
Simplifies protection -- easy to interpose and check permissions
More goodies:
• Memory-mapped files
• Cheap fork() with copy-on-write pages (COW)

VP 1
VP 2
...

VP 1
VP 2
...

PP 2

PP 6

PP 8

...
PP 9

PhysicalVirtual

