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Virtual Memory 
Process Abstraction, Part 2: Private Address Space

Motivation: why not direct physical memory access? 
Address translation with pages 

Extra benefits: sharing and protection 

Memory as a contiguous array of bytes is a lie!  Why?
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Problems with physical addressing
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Problem 1: memory management
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Also: 
Context switches must swap out entire memory contents. 
Isn't that expensive?

Problem 2: capacity
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64-bit addresses can address 
several exabytes 

(18,446,744,073,709,551,616 bytes)

?

1 virtual address space per process, 
with many processes…

Physical main memory offers 
a few gigabytes 

(e.g. 8,589,934,592 bytes)

(To scale with 64-bit address space, 
you can't see it.)



Problem 3: protection
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Problem 4: sharing
Physical main memory

Process i

Process j

Solution: Virtual Memory (address indirection)
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Indirection

Direct naming 

Indirect naming
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What if we move Thing?

Thing
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(it's everywhere!)
Tangent: indirection everywhere

• Pointers 
• Constants 
• Procedural abstraction 
• Domain Name Service (DNS) 
• Dynamic Host Configuration Protocol (DHCP) 
• Phone numbers 
• 911 
• Call centers 
• Snail mail forwarding 
• …
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“Any problem in computer science can be solved by adding another level of indirection.” 
–David Wheeler, inventor of the subroutine, or Butler Lampson 

Another Wheeler quote? "Compatibility means deliberately repeating other people's mistakes." 
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Virtual addressing and address translation
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Page-based mapping
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fixed-size, aligned pages 
page size = power of two

Map virtual pages 
onto physical pages.

Some virtual pages do not fit!   
Where are they stored?

Cannot fit all virtual pages!  Where are the rest stored?
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Virtual Memory

Virtual memory: cache for disk?
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Address translation
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Page table
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Virtual memory benefits: 
Simple address space allocation

Process needs private contiguous address space.
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Virtual memory benefits:
Protection: 

All accesses go through translation. 
Impossible to access physical memory not mapped in virtual address space.  

Sharing: 
Map virtual pages in separate address spaces to same physical page (PP 6).
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Virtual memory benefits: 
Memory permissions
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Exception if not allowed.
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Summary: virtual memory
Programmer’s view of virtual memory 

System view of virtual memory
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Each process has its own private linear address space 
Cannot be corrupted by other processes 

Uses memory efficiently (due to locality) by caching virtual 
memory pages 
Simplifies memory management and sharing 
Simplifies protection -- easy to interpose and check permissions 
More goodies: 
• Memory-mapped files 
• Cheap fork() with copy-on-write pages (COW) 
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