Shifting

Suppose we are in eight-bit world. What is the result of the following:
$(1101$ 1110) $\ll 3$
11110000
(1101 1110) >> 3 (arithmetic)
11111011
(1101 1110) >> 3 (logical)
00011011
(0010 0111) $\ll 3$
00111000
(0010 0111) >> 3 (arithmetic)
00000100
(0010 0111) >> 3 (logical)
00000100

Some bitwise operations

Evaluate the following, assuming 4-bit values:

$1010 \mid 0101$	$1010\|\mid 0101$
1111	0001
$1010 \& 0101$	$1010 \& \& 0101$
0000	0001
~ 1001	$!1001$
0110	0000

Masking (credit to CSAPP)
Let x be an integer (type int). Write C expressions in terms of x. Do not use constants greater than 0xFF
A. The least significant byte of x, with all other bits set to 0
$x \& 0 x F F$
B. All but the least significant byte of x complemented, with the least significant byte left unchanged.

```
(x & 0xFF) | (~x & ~0xFF) // one option
(x & 0xFF) | ~(x | 0xFF) // another option
```

C. The least significant byte set to all ones, and all other bytes of x left unchanged
$x \mid 0 x F F$

Does anything change if x is unsigned?
No. Bitwise operators operate on the value without regard to whether it has a signed or unsigned type.

