Floating-point numbers

Fractional binary numbers
IEEE floating-point standard
Floating-point operations and rounding

Lessons for programmers

Many more details we will skip (it’s a 58-page standard...)
See CSAPP 2.4 for more detail.
Fractional Binary Numbers

\[\sum_{k=-j}^{i} b_k \cdot 2^k\]
Fractional Binary Numbers

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 and 3/4</td>
<td></td>
</tr>
<tr>
<td>2 and 7/8</td>
<td></td>
</tr>
<tr>
<td>47/64</td>
<td></td>
</tr>
</tbody>
</table>

Observations

Shift left =
Shift right =
Numbers of the form $0.111111..._2$ are...?

Limitations:

Exact representation possible when?

\[
\frac{1}{3} = 0.333333..._{10} =
\]
Fixed-Point Representation

Implied binary point.

\[b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ [.] \ b_2 \ b_1 \ b_0 \]
\[b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ b_2 \ b_1 \ b_0 \ [.] \]

range: difference between largest and smallest representable numbers

precision: smallest difference between any two representable numbers

fixed point = **fixed range**, **fixed precision**
IEEE Floating Point Standard 754
IEEE = Institute of Electrical and Electronics Engineers

Numerical form:

\[V_{10} = (-1)^S \times M \times 2^E \]

Sign bit \(s \) determines whether number is negative or positive
Significand (mantissa) \(M \) usually a fractional value in range \([1.0,2.0)\)
Exponent \(E \) weights value by a \((-/+\)) power of two
Analogous to scientific notation

Representation:

MSB \(s \) = sign bit \(s \)
\(\text{exp} \) field encodes \(E \) (but is \textit{not equal} to \(E \))
\(\text{frac} \) field encodes \(M \) (but is \textit{not equal} to \(M \))

Numerically well-behaved, but hard to make fast in hardware
Precisions

Single precision (**float**): **32 bits**

![Single precision diagram](image)

Double precision (**double**): **64 bits**

![Double precision diagram](image)

Finite representation of infinite range...
Three kinds of values

\[V = (-1)^s \times M \times 2^E \]

1. **Normalized**: \(M = 1.xxxxx \ldots \)
 - As in scientific notation: \(0.011 \times 2^5 = 1.1 \times 2^3 \)
 - Representation advantage?

2. **Denormalized, near zero**: \(M = 0.xxxxx \ldots \), smallest \(E \)
 - Evenly space near zero.

3. **Special values**:
 - **0.0**:
 \[s = 0 \quad \text{exp} = 00...0 \quad \text{frac} = 00...0 \]
 - \(+\text{inf}, -\text{inf}\) :
 \[\text{exp} = 11...1 \quad \text{frac} = 00...0 \]
 - Division by 0.0
 - **NaN (Not a Number)**:
 \[\text{exp} = 11...1 \quad \text{frac} \neq 00...0 \]
 - sqrt(-1), \(\infty - \infty \), \(\infty \times 0 \), etc.
Value distribution
Normalized values, with float example

\[V = (-1)^s \times M \times 2^E \]

Value: \texttt{float f = 12345.0;}

\[12345_{10} = 11000000111001_2 \]
\[= 1.1000000111001_2 \times 2^{13} \quad \text{(normalized form)} \]

Significand:

\[M = 1.1000000111001 \]
\[\frac{\text{frac}}{} = 100000011100100000000000_2 \]

Exponent: \(E = \text{exp} - \text{Bias} \Rightarrow \text{exp} = E + \text{Bias} \)

\[E = 13 \]
\[\text{Bias} = 127 = 2^7 - 1 = 2^{k-1} - 1 \quad \text{Splits exponents roughly -/+} \]
\[\text{exp} = 140 = 10001100_2 \]

Result:

\[0 \quad 10001100 \quad 1000000111001000000000000000 \]
2. Denormalized Values: near zero

"Near zero": $\exp = 000\ldots0$

Exponent:

$$E = 1 + \exp - \text{Bias} = 1 - \text{Bias}$$

Significand: leading zero

$$M = 0.\,\text{xxx}\ldots\text{x}_2$$

frac = xxx...x

Cases:

$\exp = 000\ldots0, \, \text{frac} = 000\ldots0$ \quad 0.0, -0.0

$\exp = 000\ldots0, \, \text{frac} \neq 000\ldots0$
Value distribution example

6-bit IEEE-like format

Bias = $2^{3-1} - 1 = 3$

s	exp	frac
1 | 3 | 2

$s=0, \text{exp}=101$
$E = 5-3 = 2$

$\text{frac} = 00, 01, 10, 11$
$M = 1.00, 1.01, 1.10, 1.11$

$s=0, \text{exp}=110$
$E = 6-3 = 3$

[Diagram showing value distribution with denormalized, normalized, and infinity symbols]
Value distribution example (zoom in on 0)

6-bit IEEE-like format

Bias = $2^{3-1} - 1 = 3$

- $s=1$, $\text{exp}=010$
 - $E = 2-3 = -1$
 - Denormalized
 - = evenly spaced

- $s=0$, $\text{exp}=001$
 - $E = 1-3 = -2$

same spacing

- $\text{exp}=000$
 - $E = 1-3 = -2$
 - Normalized

Denormalized

Normalized

Infinity
Try to represent 3.14, 6-bit example

6-bit IEEE-like format

Bias = $2^{3-1} - 1 = 3$

Value: 3.14;

3.14 = 11.0010 0011 1101 0111 0000 1010 000...

= 1.1001 0001 1110 1011 1000 0101 0000... \(2 \times 2^1\) (normalized form)

Significand:

\[M = 1.10010001111010111011100001010000... \]

\[\text{frac}=\frac{10}{2} \]

Exponent:

\[E = 1 \quad \text{Bias} = 3 \quad \text{exp} = 4 = 100_2 \]

Result:

\[0\ 100\ 10 = 1.10_2 \times 2^1 = 3 \quad \text{next highest?} \]
Floating Point Arithmetic*

\[V = (-1)^s \cdot M \cdot 2^E \]

\[\text{double } x = \ldots, \ y = \ldots; \]
\[\text{double } z = x + y; \]

1. **Compute exact result.**
2. **Fix/Round**, roughly:
 - Adjust \(M \) to fit in \([1.0, 2.0)\)...
 - If \(M \geq 2.0 \): shift \(M \) right, increment \(E \)
 - If \(M < 1.0 \): shift \(M \) left by \(k \), decrement \(E \) by \(k \)
 - Overflow to infinity if \(E \) is too wide for \text{exp}
 - Round* \(M \) if too wide for \text{frac}.
 - Underflow if nearest representable value is 0.

*complicated...
Lessons for programmers

$$V = (-1)^S \times M \times 2^E$$

float ≠ real number ≠ double

Rounding breaks associativity and other properties.

double a = ..., b = ...;

...

![Red X](image)

if (a == b) ...

if (abs(a - b) < epsilon) ...