
CS 251 Fall 2019
Principles of Programming Languages
Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

CS 240 Stage 2!
Hardware-Software Interface

Memory addressing, C language, pointers
Assertions, debugging

Machine code, assembly language, program translation
Control flow

Procedures, stacks
Data layout, security, linking and loading

1

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

CS 251 Fall 2019
Principles of Programming Languages
Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Programming with Memory

the memory model
pointers and arrays in C

2

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Programming with Memory

Devices (transistors, etc.)

Solid-State Physics

Ha
rd

w
ar

e

Digital Logic

Microarchitecture

Instruction Set Architecture

Operating System

Programming Language

Compiler/Interpreter

Program, Application

So
ft

w
ar

e

3

Computer

Instruction Set Architecture (HW/SW Interface)

memory

Instruction
Logic

Registers

processor

Encoded
Instructions

Data

Instructions
• Names, Encodings
• Effects
• Arguments, Results

Local storage
• Names, Size
• How many Large storage

• Addresses, Locations

4

Byte-addressable memory = mutable byte array

Address = index
• Unsigned number
• Represented by one word
• Computable and storable as a value

5

• •
 •

0x00…0

0xFF…F

address space
range of possible addresses

Location / cell = element
• Identified by unique numerical address
• Holds one byte (8 bits)

0xFF…F

Operations:
• Load: read contents at given address
• Store: write contents at given address

store

load

Store across contiguous byte locations.
Example: 8 byte (64 bit) values

Multi-byte values in memory

6

64-bit
Words Bytes Address

0x0F
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01
0x00

0x1F
0x1E
0x1D
0x1C
0x1B
0x1A
0x19
0x18
0x17
0x16
0x15
0x14
0x13
0x12
0x11
0x10

✔

✘

Alignment
Multi-byte values start at addresses that are
multiples of their size

Bit order within byte always same.
Recall: byte ordering within larger value?

Endianness: details

7

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

least significant bytemost significant byte

2A B6 00 0B

Little Endian: least significant byte first
• low order byte at low address
• high order byte at high address
• used by x86, … and CS240!

Address Contents
03 2A

02 B6

01 00

00 0B

Big Endian: most significant byte first
• high order byte at low address
• low order byte at high address
• used by networks, SPARC, …

Address Contents
03 0B

02 00

01 B6

00 2A

In what order are the individual bytes of a multi-byte value
stored in memory?

Data, addresses, and pointers

8

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

memory drawn as 32-bit values,
little endian order

+0+1+2+3

For these slides, we’ll draw the bytes in this reverse
order so that multi-byte values can be read directly

Data, addresses, and pointers
address = index of a location in memory
pointer = a reference to a location in memory,
	 	 	 represented as an address stored as data

Let’s store the number 240 at address 0x20.

24010 = F016 = 0x00 00 00 F0

At address 0x08 we store a pointer to the contents at address 0x20.

At address 0x00, we store a pointer to a pointer.

The number 12 is stored at address 0x10.
Is it a pointer?
How do we know if values are pointers or not?
How do we manage use of memory?

9

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

20000000

08000000

F0000000

0C000000

+0+1+2+3

memory drawn as 32-bit values,
little endian order

C: Variables are locations
The compiler creates a map from variable name  location.
Declarations do not initialize!

int x; // x @ 0x20
int y; // y @ 0x0C

x = 0; // store 0 @ 0x20

// store 0x3CD02700 @ 0x0C
y = 0x3CD02700;

10

x

y

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

+0+1+2+3

00000000

0027D03C

// 1. load the contents @ 0x0C
// 2. add 3
// 3. store sum @ 0x20
x = y + 3;

C: Variables are locations

11

x

y

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

+0+1+2+3

0027D03C

0327D03C

The compiler creates a map from variable name  location.
Declarations do not initialize!

int x; // x @ 0x20
int y; // y @ 0x0C

x = 0; // store 0 @ 0x20

// store 0x3CD02700 @ 0x0C
y = 0x3CD02700;

// 1. load the contents @ 0x0C
// 2. add 3
// 3. store sum @ 0x20
x = y + 3;

C: Pointer operations and types
address = index of a location in memory
pointer = a reference to a location in memory, an address stored as data

12

Expressions using addresses and pointers:
&___	 address of the memory location representing ___

	 	 	 a.k.a. "reference to ___"
*___	 contents at the memory address given by ___

	 	 	 a.k.a. "dereference ___"

Pointer types:
	 ___*	 address of a memory location holding a ___
	 	 	 a.k.a. "a reference to a ___"

C: Types determine sizes
Sizes of data types (in bytes)

Java Data Type	 C Data Type	 32-bit word	 64-bit word
boolean	 bool	 1	 1
byte	 char	 1	 1
char	 	 2	 2
short	 short int	 2	 2
int	 int	 4	 4
float	 float	 4	 4
	 long int	 4	 8
double	 double	 8	 8
long	 long long	 8	 8
 	 long double	 8	 16
(reference)	 (pointer) *	 4	 8

13

address size = word size

Used by CS Linux, most modern machines

int* p;

int x = 5;
int y = 2;

p = &x;

y = 1 + *p;

Add 1 to

C: Pointer example

14

that will hold the address of a memory location holding an int

Declare two variables, x and y, that hold ints,
and store 5 and 2 in them, respectively.

Declare a variable, p

the contents of memory at the address

given by the contents of the
memory location representing p

Take the address of the memory
representing x

... and store it in the memory location representing p.
Now, “p points to x.”

& = address of
* = contents at

… and store it in the memory location representing y.

C: Pointer example

// 1. load the contents @ 0x04 (=0x14)
// 2. store 0xF0 as contents @ 0x14
*p = 240;

15

x

y0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

+0+1+2+3

p

What is the type of *p?
What is the type of &x?
What is *(&y) ?

value

& = address of
* = contents at

C assignment:
Left-hand-side = right-hand-side;

location

int* p; // p @ 0x04
int x = 5; // x @ 0x14, store 5 @ 0x14
int y = 2; // y @ 0x24, store 2 @ 0x24
p = &x; // store 0x14 @ 0x04

// 1. load the contents @ 0x04 (=0x14)
// 2. load the contents @ 0x14 (=0x5)
// 3. add 1
// 4. store sum as contents @ 0x24
y = 1 + *p;

02000000

05000000

14000000

06000000

F0000000

C: Pointer type syntax
Spaces between base type, *, and variable name mostly do not matter.

The following are equivalent:

int* ptr;
I see: "The variable ptr holds an address of an int in memory."

int * ptr;

int *ptr;
Looks like: "Dereferencing the variable ptr will yield an int."
Or "The memory location where the variable ptr points holds an int."

16

more common C style

Caveat: do not declare multiple variables unless using the last form.
int* a, b; means int *a, b; means int* a; int b;

C: Arrays

17

Declaration: int a[6];

element type

name
number of
elements

a is a name for the array’s base address,
can be used as an immutable pointer.

Arrays are adjacent memory locations
storing the same type of data.

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

+0+1+2+3

C: Arrays

18

F0000000

Declaration:

a[5]

a[0]

…

a[0] = 0xf0;Indexing:

int a[6];

Address of a[i] is base address a
plus i times element size in bytes.

a is a name for the array’s base address,
can be used as an immutable pointer.

Arrays are adjacent memory locations
storing the same type of data.

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

+0+1+2+3

C: Arrays

19

F0000000

F0000000

Declaration:

a[5]

a[0]

…

a[0] = 0xf0;
a[5] = a[0];

Indexing:

int a[6];

Address of a[i] is base address a
plus i times element size in bytes.

a is a name for the array’s base address,
can be used as an immutable pointer.

Arrays are adjacent memory locations
storing the same type of data.

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

+0+1+2+3

C: Arrays

20

Declaration:

Indexing:

No bounds
check:

AD0B0000
F0000000

F0000000

a[5]

a[0]

…

a[6] = 0xBAD;

int a[6];

a[0] = 0xf0;
a[5] = a[0];

Address of a[i] is base address a
plus i times element size in bytes.

a is a name for the array’s base address,
can be used as an immutable pointer.

Arrays are adjacent memory locations
storing the same type of data.

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

+0+1+2+3

C: Arrays

21

Declaration:

Indexing:

No bounds
check:

AD0B0000

AD0B0000
F0000000

F0000000

a[5]

a[0]

…

a[6] = 0xBAD;
a[-1] = 0xBAD;

int a[6];

a[0] = 0xf0;
a[5] = a[0];

Address of a[i] is base address a
plus i times element size in bytes.

a is a name for the array’s base address,
can be used as an immutable pointer.

Arrays are adjacent memory locations
storing the same type of data.

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

+0+1+2+3

C: Arrays

22

0C000000

Declaration:

p

Indexing:

Pointers:

No bounds
check:

AD0B0000

AD0B0000
F0000000

F0000000

a[5]

a[0]

…

a[6] = 0xBAD;
a[-1] = 0xBAD;

int* p;

int a[6];

a[0] = 0xf0;
a[5] = a[0];

p = a;
p = &a[0];

Address of a[i] is base address a
plus i times element size in bytes.

a is a name for the array’s base address,
can be used as an immutable pointer.

Arrays are adjacent memory locations
storing the same type of data.

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

+0+1+2+3

equivalent{

C: Arrays

23

Declaration:

p

Indexing:

Pointers:

No bounds
check:

0C000000
AD0B0000

AD0B0000
F0000000

F0000000

a[5]

a[0]

…

a[6] = 0xBAD;
a[-1] = 0xBAD;

int* p;
p = a;
p = &a[0];
*p = 0xA;

int a[6];

a[0] = 0xf0;
a[5] = a[0];

Address of a[i] is base address a
plus i times element size in bytes.

a is a name for the array’s base address,
can be used as an immutable pointer.

Arrays are adjacent memory locations
storing the same type of data.

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

+0+1+2+3

equivalent{

C: Arrays

24

Declaration:

p

Indexing:

Pointers:

No bounds
check:

0C000000
AD0B0000

AD0B0000

0A000000

a[5]

a[0]

…

F0000000

a[6] = 0xBAD;
a[-1] = 0xBAD;

int* p;
p = a;
p = &a[0];
*p = 0xA;

int a[6];

a[0] = 0xf0;
a[5] = a[0];

Address of a[i] is base address a
plus i times element size in bytes.

a is a name for the array’s base address,
can be used as an immutable pointer.

Arrays are adjacent memory locations
storing the same type of data.

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

+0+1+2+3

equivalent{

array indexing = address arithmetic
Both are scaled by the size of the type.

{equivalent

equivalent{

C: Arrays

25

Declaration:

p

Indexing:

Pointers:

No bounds
check:

a[5]

a[0]

…

AD0B0000

AD0B0000

0C000000

0A000000

F0000000

0B000000

a[6] = 0xBAD;
a[-1] = 0xBAD;

int* p;
p = a;
p = &a[0];
*p = 0xA;

p[1] = 0xB;

int a[6];

a[0] = 0xf0;
a[5] = a[0];

*(p + 1) = 0xB;

Address of a[i] is base address a
plus i times element size in bytes.

a is a name for the array’s base address,
can be used as an immutable pointer.

Arrays are adjacent memory locations
storing the same type of data.

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

+0+1+2+3

array indexing = address arithmetic
Both are scaled by the size of the type.

C: Arrays

26

Declaration:

p

Indexing:

Pointers:

No bounds
check:

{equivalent

a[5]

a[0]

…

equivalent{

AD0B0000

AD0B0000

0C000000

0A000000

F0000000

0B000000

a[6] = 0xBAD;
a[-1] = 0xBAD;

int* p;
p = a;
p = &a[0];
*p = 0xA;

p[1] = 0xB;
*(p + 1) = 0xB;
p = p + 2;

int a[6];

a[0] = 0xf0;
a[5] = a[0];

Address of a[i] is base address a
plus i times element size in bytes.

a is a name for the array’s base address,
can be used as an immutable pointer.

Arrays are adjacent memory locations
storing the same type of data.

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

+0+1+2+3

array indexing = address arithmetic
Both are scaled by the size of the type.

{equivalent

equivalent{

C: Arrays

27

Declaration:

p

Indexing:

Pointers:

No bounds
check:

a[5]

a[0]

…

AD0B0000

AD0B0000

14000000

0A000000

F0000000

0B000000

a[6] = 0xBAD;
a[-1] = 0xBAD;

int* p;
p = a;
p = &a[0];
*p = 0xA;

p[1] = 0xB;
*(p + 1) = 0xB;
p = p + 2;

int a[6];

a[0] = 0xf0;
a[5] = a[0];

Address of a[i] is base address a
plus i times element size in bytes.

a is a name for the array’s base address,
can be used as an immutable pointer.

Arrays are adjacent memory locations
storing the same type of data.

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

+0+1+2+3

array indexing = address arithmetic
Both are scaled by the size of the type.

{equivalent

equivalent{

C: Arrays

28

Declaration:

p

Indexing:

Pointers:

a[6] = 0xBAD;
a[-1] = 0xBAD;

No bounds
check:

int* p;
p = a;
p = &a[0];
*p = 0xA;

p[1] = 0xB;
*(p + 1) = 0xB;
p = p + 2;

int a[6];

a[0] = 0xf0;
a[5] = a[0];

a[5]

a[0]

…

AD0B0000

AD0B0000

14000000

0A000000

F0000000

0B000000

*p = a[1] + 1;

0C000000

Address of a[i] is base address a
plus i times element size in bytes.

a is a name for the array’s base address,
can be used as an immutable pointer.

Arrays are adjacent memory locations
storing the same type of data.

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

+0+1+2+3

C: Array allocation
Basic Principle
T A[N];  
Array of length N with elements of type T and name A  
Contiguous block of N*sizeof(T) bytes of memory

29

char string[12];

x x + 12

int val[5];

x x + 4 x + 8 x + 12 x + 16 x + 20

double a[3];

x + 24x x + 8 x + 16

Use sizeof to determine
proper size in C.

char* p[3];  
(or char *p[3];) x86-64

x + 24x x + 8 x + 16
size depends on the
machine word size

C: Array access
Basic Principle
T A[N];
Array of length N with elements of type T and name A
Identifier A has type T*

30

int val[5]; 0 2 4 8 1

x x + 4 x + 8 x + 12 x + 16 x + 20

ex

Expression	 	 Type		 Value
val[4] int 1
val int *
val+1 int *
&val[2] int *
val[5] int
*(val+1) int
val + i int *

Representing strings
A C-style string is represented by an array of bytes (char).
— Elements are one-byte ASCII codes for each character.
— ASCII = American Standard Code for Information Interchange

31

32 space 48 0 64 @ 80 P 96 ` 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 ” 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 V 102 f 118 v
39 ’ 55 7 71 G 87 W 103 g 119 w
40 (56 8 72 H 88 X 104 h 120 x
41) 57 9 73 I 89 Y 105 I 121 y
42 * 58 : 74 J 90 Z 106 j 122 z
43 + 59 ; 75 K 91 [107 k 123 {
44 , 60 < 76 L 92 \ 108 l 124 |
45 - 61 = 77 M 93] 109 m 125 }
46 . 62 > 78 N 94 ^ 110 n 126 ~
47 / 63 ? 79 O 95 _ 111 o 127 del

C strings: arrays of ASCII characters ending with null character.

C: Null-terminated strings

32

0x57 0x65 0x6C 0x6C 0x65 0x73 0x6C 0x65 0x79 0x20 0x43 0x53 0x00

'W' 'e' 'l' 'l' 'e' 's' 'l' 'e' 'y' ' ' 'C' 'S' '\0'

Why?

ex

int string_length(char str[]) {

}

Does Endianness matter for strings?

C: * and []
C programmers often use * where you might expect []:

e.g., char*:
• pointer to a char
• pointer to the first char in a string of unknown length

int strcmp(char* a, char* b);

33

ex

C: 0 vs. '\0' vs. NULL

Is it important/necessary to encode the null character or the null pointer as 0x0?

What happens if a programmer mixes up these "zeroey" values? 34

0
Name: 	 zero
Type: 	 int
Size: 	 4 bytes
Value:	 0x00000000
Usage: 	 The integer zero.

'\0'
Name: 	 null character
Type: 	 char
Size: 	 1 byte
Value: 	 0x00
Usage: 	 Terminator for C strings.

NULL
Name: 	 null pointer / null reference / null address
Type: 	 void*
Size:		 1 word (= 8 bytes on a 64-bit architecture)
Value: 	 0x00000000000000
Usage: 	 The absence of a pointer where one is expected.
	 	 Address 0 is inaccessible, so *NULL is invalid; it crashes.

Addr Perm Contents Managed by Initialized

2N-1

Stack RW Procedure context Compiler Run time

Heap RW Dynamic
data structures

Programmer,
malloc/free, new/

GC
Run time

Statics RW Global variables/
static data structures

Compiler/
Assembler/Linker Startup

Literals R String literals Compiler/
Assembler/Linker Startup

Text X Instructions Compiler/
Assembler/Linker Startup

0

Memory address-space layout

35

C: Dynamic memory allocation in the heap

void* malloc(size_t size);

void free(void* ptr);

36

pointer to newly allocated block
of at least that size number of contiguous bytes required

pointer to allocated block to free

Managed by memory allocator:

C: standard memory allocator
#include <stdlib.h> // include C standard library

void* malloc(size_t size)

Allocates a memory block of at least size bytes and returns its address.
If memory error (e.g., allocator has no space left), returns NULL.
Rules:

Check for error result.
Cast result to relevant pointer type.
Use sizeof(...) to determine size.

void free(void* ptr)

Deallocates the block referenced by ptr,
making its space available for new allocations.
ptr must be a malloc result that has not yet been freed.
Rules:
ptr must be a malloc result that has not yet been freed.
Do not use *ptr after freeing. 37

#define ZIP_LENGTH 5
int* zip = (int*)malloc(sizeof(int)*ZIP_LENGTH);
if (zip == NULL) { // if error occurred
 perror("malloc"); // print error message
 exit(0); // end the program
}

zip[0] = 0;
zip[1] = 2;
zip[2] = 4;
zip[3] = 8;
zip[4] = 1;

printf("zip is");
for (int i = 0; i < ZIP_LENGTH; i++) {
 printf(" %d", zip[i]);
}
printf("\n");

free(zip);

C: Dynamic array allocation

38

zip +0 +4 +8 +12 +16 +20

0x7fedd2400dcc
0x7fedd2400dc8
0x7fedd2400dc4
0x7fedd2400dc0

0x7fff58bdd938

0x7fedd2400dd01
8
4
2
0

0x7fedd2400dc0zip

0 2 4 8 1

int** zips = (int**)malloc(sizeof(int*) * 3);

zips[0] = (int*)malloc(sizeof(int)*5);
int* zip0 = zips[0];
zip0[0] = 0;
zips[0][1] = 2;
zips[0][2] = 4;
zips[0][3] = 8;
zips[0][4] = 1;

zips[1] = (int*)malloc(sizeof(int)*5);
zips[1][0] = 2;
zips[1][1] = 1;
zips[1][2] = 0;
zips[1][3] = 4;
zips[1][4] = 4;

zips[2] = NULL;

C: Array of pointers to arrays of ints

39

0x10004380 0x10008900 0x00000000zips

0 2 4 8 1 2 1 0 4 4

Why
no NULL?

Why terminate
with NULL?

Zip code

40

NULL

// return a count of all zips that end with digit endNum
int zipCount(int* zips[], int endNum) {
 int count = 0;
 int** cursor = zips;
 while (*cursor) {
 if ((*cursor)[4] == endNum) {
 count++;
 }
 cursor++;
 }
 return count;
}

0x10004380 0x10008900 0x00000000
zips

0 2 4 8 1 2 1 0 4 4

Watch out!
*cursor[4] means *(cursor[4])

scanf reads formatted input

41

int val;

...

scanf("%d", &val);

0x7FFFFFFFFFFFFF3C
0x7FFFFFFFFFFFFF38
0x7FFFFFFFFFFFFF34

CEFAD4BAval

Store in memory at the address
given by the address of val:
store input @ 0x7F…F38.Read one int

in decimal10 format
from input.

Store it in memory
at this address.

Declared, but not initialized.
Holds anything.

3412FECA

int val;

...

scanf("%d", val);

C: Classic bug using scanf

42

!!!

Read one int
in decimal10 format
from input.

Store it in memory
at this address.

Store in memory at the address
given by the contents of val
(implicitly cast as a pointer):
store input @ 0xBAD4FACE.

0x7FFFFFFFFFFFFF3C
0x7FFFFFFFFFFFFF38
0x7FFFFFFFFFFFFF34

CEFAD4BAval

Declared, but not initialized.
Holds anything.

Best case: 🤦 crash immediately
with segmentation fault/bus error.

Bad case: 🤬 silently corrupt data
stored @ 0xBAD4FACE,
fail to store input in val,
and keep going.

Worst case: 💻🔥🧨🚀
program does literally anything.

...

0x00000000BAD4FACE

...

3412FECA

C: Memory error messages
11: segmentation fault ("segfault", SIGSEGV)
	 accessing address outside legal area of memory
10: bus error (SIGBUS)
	 accessing misaligned or other problematic address

More to come on debugging!

43

http://xkcd.com/371/

C: Why?
Why learn C?
• Think like actual computer (abstraction close to machine level) without dealing

with machine code.
• Understand just how much Your Favorite Language provides.
• Understand just how much Your Favorite Language might cost.
• Classic.
• Still (more) widely used (than it should be).
• Pitfalls still fuel devastating reliability and security failures today.

44

Why not use C?
• Probably not the right language for your next personal project.
• It "gets out of the programmer's way” … even when the programmer is unwittingly

running toward a cliff.
• Advances in programming language design since the 70’s have produced languages

that fix C's problems while keeping strengths.

Group example: longest string starts with

45

NULL

// Return the starting character of the longest string in the
// null-terminated strings array.
// You can use: int strlen(char *str)
char longest_string_starts_with(char ** strings) {

}

0x10004380 0x10008900 0x00000000
strings

‘a’ ‘b’ ‘\0’ ‘h’ ‘i’ ‘i’ ‘i’ ‘\0’

ex

output: ‘h’

