Computer Science 240

Basic Logic

Assignment for Lab 2
Due: at beginning of Lab, submit hardcopy with solutions

1. Write a Boolean function for F given the following truth table, using a sum-of-products form, and do not simplify your expression.

ABC F
$000 \quad 1$
$001 \quad 0$
010 1
0111
$100 \quad 0$
1011
$110 \quad 1$
1110
2. Write a boolean function for F produced by the following transistor circuit (HINT: you should try to identify subcircuits which look like circuits you saw in lecture and lab for basic gates, working your way from left to right):

2. Draw a circuit which implements the following function G, using the logic gate symbols for AND, OR, and NOT.

Do not simplify G before drawing the circuit.
You may use 1, 2, or 3-input gates of type AND, OR, and NOT.

$$
\mathrm{G}=\mathrm{A}\left(\mathrm{BC}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)+\mathrm{B}\left(\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{B}\right)
$$

3. Give the truth table for G. In the truth table, include the outputs of each of the gates in your circuit:

A B C
000
001
010
011
100
101
110
111
4. Use the identities of Boolean algebra to show that G is equivalent to $F=A+B$. Show all your work, and list the identity used for each step.
$\mathrm{G}=\mathrm{A}\left(\mathrm{BC}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)+\mathrm{B}\left(\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{B}\right) \quad \mathrm{F}=\mathrm{A}+\mathrm{B}$

