CS240 Laboratory 2 Digital Logic

- Circuit equivalence
- Boolean Algebra/Universal gates
- Exclusive OR
- Binary Numbers
- Integrated circuits
- Logic Diagrams vs. pin-outs
- LogicWorks demo

Circuit Equivalence

Two boolean functions with same truth table = **equivalent**

When there is an equivalent circuit that uses fewer gates, transistors, or chips, it is preferable to use that circuit in the design

Example:

Given:
$$F = A'B' + A'B$$
 $Q = A' + A'B + A'B'$

A B	A'B'	A'B	F	A	В	A'	A'B	A' B'	Q
0 0	1	0	1	0	0	1	0	1	1
0 1	0	1	1	0	1	1	0	0	1
1 0	0	0	0	1	0	0	0	0	0
1 1	0	0	0	1	1	0	0	0	0

F and Q are equivalent because they have the same truth table.

Identities of Boolean Algebra

- Identity law
$$1A = A \quad 0 + A = A$$

- Null law
$$0A = 0 1 + A = 1$$

- Idempotent law
$$AA = A A + A = A$$

- Inverse law
$$AA' = 0$$
 $A + A' = 1$

- Commutative law
$$AB = BA$$
 $A + B = B + A$

- Associative law
$$(AB)C = A(BC)$$

 $(A + B) + C = A + (B + C)$

- Distributive law
$$A + BC = (A + B)(A + C)$$

 $A(B + C) = AB + AC$

- Absorption law
$$A(A + B) = A$$

 $A + AB = A$

- De Morgan's law
$$(AB)' = A' + B'$$

 $(A + B)' = A'B'$

Example:

$$F = A'B' + A'B$$
 $Q = A' + A'B + A'B'$
 $= A'(B' + B)$ distributive $= A' + A'B'$ absorption
 $= A'(1)$ inverse $= A'$ absorption
 $= A'$ identity

Universal Gates

Any Boolean function can be constructed with NOT, AND, and OR gates

NAND and NOR = universal gates

DeMorgan's Law shows how to make AND from NOR (and vice-versa)

$$AB = (A' + B')'$$
 (**AND** from NOR)
 $A + B = (A'B')'$ (**OR** from NAND)

NOT from a NOR

OR from a NOR

$$\stackrel{A}{=}$$

To implement a function using only NOR gates:

- apply DeMorgan's Law to each AND in the expression until all ANDs are converted to NORs
- use a NOR gate for any NOT gates, as well.
- remove any redundant gates (NOT NOT, may remove both)

Implementing the circuit using only NAND gates is similar.

Example:
$$Q = (AB)'B'$$

 $= (A' + B')B'$
 $= ((A'+B')' + B)'$ NOTE: you can use a NOR gate to produce A' and you can do the same for B'

Simplifying Circuits or Proving Equivalency

General rule to simplify circuits or prove equivalency:

- 1. Distribute if possible, and if you can't, apply DeMorgan's Law so that you can.
- 2. Apply other identities to remove terms, and repeat step 1.

EXAMPLE: Is (A'B)'(AB)' + A'B' equivalent to (AB)'?

$$F = (A'B)'(AB)' + A'B'$$

$$= (A + B') (A' + B') + A'B'$$

$$= AA' + AB' + A'B + B'B' + A'B'$$

$$= 0 + AB' + A'B + B' + A'B'$$

$$= AB' + A'B + A'B'$$

$$= B' (A + A') + A'B$$

$$= B'(1) + A'B$$

$$= B' + A'B$$

$$= B' + A'B$$

$$= B' + (A + B')'$$

$$= (AB + BB')'$$

$$= (AB + B)'$$

$$= (AB)'$$

-- can't distribute

-- can't distributive

inverse and idempotent identity

identity

-- can't distributive

inverse and idempotent identity

-- can't distributive

inverse and identity

-- can't distributive

inverse identity

Exclusive OR (XOR)

$$F = AB' + A'B = A \oplus B$$

<u>A B F</u>

0 0 0

0 1 1

1 0 1

1 1 0

Available on IC as a gate, useful for comparison problems

Example: Even parity $F = A \oplus B \oplus C$

ABCF

- 0 0 0 0
- 0 0 1 1
- 0 1 0 1
- 0 1 1 0
- 1 0 0 1
- 1 0 1 0
- 1 1 0 0
- 1 1 1 1

Binary Numbers

Hex	Binary							
0	0	0	0	0				
	0	0	0	1				
2	0	0	1	0				
3	0	0	1	1				
4	0	1	0	0				
5	0	1	0	1				
6	0	1	1	0				
1 2 3 4 5 6 7 8 9	0	1	1	1				
8	1	0	0	0				
	1	0	0	1				
A	1	0	1	0				
В	1	0	1	1				
B C D	1	1	0	0				
D	1	1	0	1				
E	1	1	1	0				
F	1	1	1	1				

Binary can be converted to decimal using positional representation of powers of 2:

$$0111_2 = 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$
, result = 7_{10}

Decimal can be also be converted to binary by finding the largest power of 2 which fits, subtract, and repeat with the remainders until remainder is 0 (assigning 1 to the positions where a power of 2 is used):

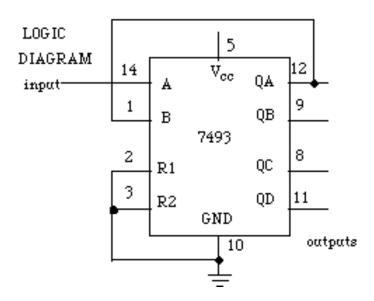
$$6_{10} = 6 - 2^2 = 2 - 2^1 = 0$$
, result = 0110_2

Hex can be converted to binary and vice versa by grouping into 4 bits.

$$11110101_2 = F5_{16} 37_{16} = 00110111$$

Logic diagrams vs. pin-outs

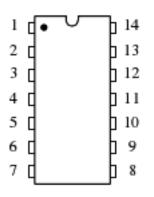
Logic diagrams are not the same as pin-outs! Logic diagrams show information about the logical operation of the device.



Pin-outs (found in **TTL Data Book** or online) show the physical layout of the pins:

Top left pin is pin 1, always to left of notch in chip, and often marked with a dot

Pins are numbered, starting with "1" at the top left corner and incremented counterclockwise around the device



Bottom left pin is almost always connected to ground (0V)

Top right pin is almost always connected to Vcc (+5V)

The chip will not work if it is not connected to power and ground!

${\bf Circuit\ Simulation/LogicWorks\ (demo)}$

