
Computability,  
the Halting Problem,  

and Program Analysis

CS251	Programming	Languages	
Fall	2016,	Lyn	Turbak	
	
Department	of	Computer	Science	
Wellesley	College	

Motivation

Which	of	these	following	Python	programs	has	inputs	
for	which	it	loops	forever?	

2-2

def f(x):
 return x+1

def g(x):
 while True:
 pass
 return x

def h2(x):
 if x <= 0:
 return x
 else:
 return h(x+1)

def h(x):
 while x > 0:
 x = x+1
 return x

def g2(x):
 return g2(x)

def k(x):
 while x != 1:
 if (x % 2) == 0:
 x = x/2
 else:
 x = 3*x + 1
 return 1

Big Idea of this Lecture

It	is	generally	impossible	to	answer	any	interes<ng	ques<on	about	
program	analysis!	
	
This	is	a	consequence	of	Rice’s	Theorem	(see	CS235).		
	
For example, will this program ever:

•  halt on certain inputs

•  encounter an array index out of bounds error?

•  throw a NullPointerException?

•  access a given object again?

•  send sensitive information over the network?

•  divide by 0?

•  run out of memory, starting with a given amount available?

•  try to treat an integer as an array?

	
	

2-3

Key Concepts from CS235

This	lecture	summarizes	key	concepts	from	CS235	Formal	
Languages	and	Automata	that	are	important	to	understand	for	
PL	design:

•  Countable	and	uncountable	sets	
•  Computable	func<ons	

•  Uncomputable	func<ons/undecidable	languages	

–  The	hal<ng	problem	

–  Reduc<on	

–  Uncomputability	and	PL	design	

•  The Church/Turing hypothesis

•  Turing-completeness

2-4

Computability	
•  A	func<on	f	is	computable	if	there	is	a	program	that	

takes	some	finite	number	of	steps	before	hal<ng	and	
producing	output	f(x).	

•  Computable:			f(x)	=	x	+	1,	for	natural	numbers	
–  addi<on	algorithm	

•  Uncomputable	(a.k.a.	undecidable)	func<ons	exist!	
–  We’ll	first	prove	this	by	a	“coun<ng	argument”:	there	are	way	
more	func<ons	than	there	are	programs	to	compute	them!	

–  Then	we’ll	show	a	concrete	example:	the	hal<ng	problem.	

	
2-5

Some	Simple	Sets	
Bool	=	the	booleans	=	{true,	false}	

Nat	=	the	natural	numbers	=	{0,	1,	2,	3	…}	

Pos	=	the	posi<ve	integers	=	{1,	2,	3,	4,	…}	

Int	=	all	integers		=	{	…,	-3,	-2,	-1,	0,	1,	2,	3,	…}	

Rat	=	all	ra<onal	numbers	(frac<ons,	w/o	duplicates)							
							=	{…,	-3/2,	-2/3,	-1/3,	-2/1,	-1/1,	0/1,		
																		1/1,	1/2,	2/1,	1/3,	2/3,	3/2,	…}	

Real	=	all	real	numbers	=	{0,	17,	-2.5,	1.736,	-5.3333…,	3.141…,	….}	

Irrat	=	all	irra<onal	numbers	(cannot	be	expressed	as	frac<ons	
									=	{sqrt(2)	=1.414..,	pi	=	3.14159…,	e	=	2.718…,	…}	

	 2-6

Nat	and	Pos	Have	the	“Same	Size”	(≅)	

Nat				0						1						2						3			…	

Pos				1						2						3						4			…		

Nat	≅	Pos	by	the	pictured	bijec<on	

2-7

Nat	and	Int	Have	the	Same	Size!	

This	is	an	example	of	proof	by	construcCon.		

Nat 0 1 2 3 4 5 6 …

 f

Int 0 1 -1 2 -2 3 -3 …

Int … -3 -2 -1 0 1 2 3 …

 f-1

Nat … 6 4 2 0 1 3 5 …

2-8

Nat	≅	Int	by	the	pictured	bijec<on	

Countable	and	Uncountable	Sets	
 A	set	S	is	

•  	finite	iff	S	≅	{1,	2,	…,	n}	for	some	n.	E.g.	Bool	(n	=	2)	

•  	infinite	iff	S	is	not	finite.		E.g.	Nat,	Int,	Rat,	Real	

•  	countably	infinite	iff	S	≅	Nat.		E.g.	Pos,	Int	

•  	countable	iff	S	is	finite	or	countably	infinite.		
		I.e.,	there	is	a	procedure	for	enumera<ng	all	the		
		elements	of	S.		E.g.,	Bool,	Pos,	Int	

•  	uncountable	iff	S	is	not	countable	

Now	we’ll	see	that	(1)	Rat	is	countable	and		
																																		(2)	Real	and	Irrat	are	uncountable	

2-9

Rat	is	Countable	
 Key	idea:	can	enumerate	Nat	x	Nat	as	follows:		

Mopping	up:	

• 	Need	to	eliminate	duplicates,	e.g.,		1/2=	2/4	

• 	Need	to	handle	nega<ve	ra<onal	(as	in	showing	Int	countable).	

2-10

Real	is	Uncountable:	Diagonaliza<on	

Key	idea:	use	a	special	form	of	proof	by	contradicCon	known	as	
diagonalizaCon.			

Assume	that	[0,1)	⊆	Real	is	countable	and	derive	a	contradic<on.		

If	[0,1)	is	countable,	there	must	be	a	bijec<on	f	∈	Nat	→	[0,1)	that	
enumerates	all	real	numbers	between	0	(inclusive)	and	1	(exclusive).	I.e.,	if	r	
∈	[0,1),	then	there	is	an	n	∈	Nat	s.t.	f(n)	=	r.			

If	this	is	so,	we	can	construct	a	table	of	f	whose	rows	are	f(n)	and	whose	
columns	show	the	digits	amer	the	decimal	point	for	each	number.		

1 4 1 5

…

...

f(0)
f(1)
f(2)
f(3)

7 3 8 2

5 4 9 6

8 2 7 3

2-11

Real	Diagonaliza<on	Con<nued		
1 4 1 5

…

...

f(0)
f(1)
f(2)
f(3)

7 3 8 2

5 4 9 6

8 2 7 3

Focus	on	the	diagonal	table	entries,	and	construct	a	number	whose	decimal	
representa<on	differs	from	every	posi<on	in	the	diagonal*.	E.g.,		.2786	…		

Any	such	number	is	not	a	row	in	the	table	and	so	is	not	in	the	image	of	f.		
Thus,	the	assump<on	that	f	is	a	bijec<on	is	wrong!		X	proof	by	contradicCon	

Indeed,	it’s	way	wrong.	The	number	of	counterexamples	we	can	construct	is	
a	way	bigger	infinity	(an	uncountable	infinity)	than	the	row	s	in	the	table.		

Diagonaliza<on	is	the	heart	of	the	hal<ng	theorem	proof	we’ll	see	soon.		

*	For	technical	reasons,	should	not	use	0	or	9	in	the	constructed	number.		 2-12

Irrat	is	Uncountable	
 Real	=	Rat	U	Irrat.	

We	know	Rat	is	countable.		

Assume	Irrat	is	countable.	Then	Real	would	be	countable.		

But	we	know	Real	is	uncountable.	Thus,	the	assump<on	that		
Irrat	is	countable	is	wrong.	X	proof	by	contradicCon.	

Conclusion:	Irrat	is	uncountable.		

2-13

An	alphabet	is	a	set	of	symbols.		
			E.g.:		Σ1	=	{0,1};			Σ2	=	{-,0,+}				Σ3	=	{a,b,	…,	y,	z};			Σ4	=	{J,	⇒,	a	,	aa	}	
	
A	string	over	Σ	is	a	sequence	of	symbols	from	Σ.			
The	empty	string	is	omen	wriren	ε.	
Σ*	denotes	all	strings	over	Σ.			E.g.:	

• 	Σ1
*	contains	ε,	0,	1,	00,	01,	10,	11,	000,	…		

• 	Σ2
*	contains	ε,	-,	0,	+,	--,	-0,	-+,	0-,	00,	0+,	+-,	+0,	++,	---,	…	

• 	Σ3
*	contains	ε,	a,	b,	…,	aa,	ab,	…,	bar,	baz,	foo,	wellesley,	…	

• 	Σ4
*	contains	ε,	J,	⇒,		a	,	aa,	…,		a	⇒	J,	…,	a	aa	,			aa	a		,…		

	
A	language	over	Σ	is	any	subset	of	Σ*.		
I.e.,	it�s	a	set	of	strings	over	Σ.		E.g.:	

• 	L1	over	Σ1	is	all	sequences	of	1s	and	all	sequences	of	10s.	
• 	L2	over	Σ2	is	all	strings	with	equal	numbers	of	-,	0,	and	+.		
• 	L3	over	Σ3	is	all	lowercase	words	in	the	OED.	
• 	L4	over	Σ4	is	{J,	J	⇒	J,	a	aa	}.	

Alphabets,	Strings,	and	Languages	

2-14

Programs	in	any	PL	are	countable!	
 •  For	any	finite	alphabet	Σ,	the	language	Σ*of	all	strings	over	Σ	is	

countable.		

-  Why?	We	can	enumerate	all	the	strings	in	order	by	
length	and	eventually	get	to	any	given	string.		

•  Any	language	over	a	finite	alphabet	Σ	is	countable,	because	
subsets	of	countable	sets	are	countable.		

•  For	any	programming	language	L	(e.g.,	Python,	Java,	etc.),	the	
valid	programs	in	L	are	countable!		

2-15

Predicates	on	Nat	

A	predicate	on	Nat	is	any	func<on	that	takes	a	natural	number	as	
an	input	and	returns	T	(true)	or	F	(false)	as	an	output.		

Mathema<cally,	we	can	represent	such	func<ons	as	input/
output	pairs.	For	example:	
•  leqTwo	=	{	(0,	T),	(1,	T),	(2,	T),	(3,	F),	(4,	F),	(5,	F),	(6,	F),	(7,	F),	…}	

•  isEven	=	{	(0,	T),	(1,	F),	(2,	T),	(3,	F),	(4,	T),	(5,	F),	(6,	T),	(7,	F),	…}	

•  isPrime	=	{	(0,	F),	(1,	F),	(2,	T),	(3,	T),	(4,	F),	(5,	T),	(6,	F),	(7,	T),	…}	

•  isNat	=	{	(0,	T),	(1,	T),	(2,	T),	(3,	T),	(4,	T),	(5,	T),	(6,	T),	(7,	T),	…}	

Define	NatPred	=	the	set	of	all	predicates	on	Nat	

																												=	{leqThree,	isEven,	isPrime,	isNat,	….}	

Important!	Mathema<cal	func<ons	like	elements	of	NatPred	
are	not	programs!	You	must	understand	this,	or	else	all	
the	following	slides	won’t	make	sense.		 2-16

NatPred	is	Uncountable!	
 Assume	there’s	a	bijec<on	f	:	Nat	→	NatPred.	E.g.	

	f(0)	=	leqTwo	
	f(1)	=	isEven	
	f(2)	=	isPrime	
	f(3)	=	isNat	
	…	

Now	make	a	diagonaliza<on	argument:	

2-17

T T T F

…

f(0)
f(1)
f(2)
f(3)

T F T F

F F T T

T T T T

0 1 2 3

…

The	Nat	predicate	{	(0,F),	(1,T),	(2,F),	(3,F),	…	}	
that	negates	every	element	on	the	diagonal		
is	not	f(i)	for	any	i	in	Nat.		
	
By	diagonaliza<on,	NatPred	is	uncountable!	

Uncomputable	Func<ons:	Summary	So	Far	

 NatPred	is	uncountable.	
	
Programs	in	any	PL	are	countable.	So	they	can’t	possibly	express	
all	the	predicates	in	NatPred.		
	
As	with	Reals,	the	uncountable	infinity	of	NatPred	is	way	bigger	
than	the	countable	infinity	of	ProgramsInPython.	From	the	
probability	perspec<ve,	0%	of	predicates	in	NatPred	can	be	wriren	
in	Python!	(We	can	clearly	write	lots	of	them,	but	that	number	is	
infinitesimally	small	compared	to	what	we	want	to	write!)	
	
Depressing	conclusion:	we	can’t	even	express	the	vast	majority	of	
predicates	in	NatPred	in	Python,	Java,	etc.,	so	clearly	we	can’t	
express	the	vast	majority	of	other	mathema<cal	func<ons!	

2-18

Do	we	care	in	prac<ce?	
Could	it	be	that	we	don’t	care	about	the	mathema<cal	func<ons	
that	we	can’t	express	with	programs?		Maybe	they	don’t	marer	…	
	
Amazingly	(and	sadly)	we	can	describe	par<cular	mathema<cal	
func<ons	related	to	PLs	that	we	care	a	lot	about	that	are	
uncomputable.		
	
The	most	famous	example	is	the	halCng	problem.		It	has	to	do	with	
analyzing	programs	that	might	not	halt	(e.g.,	they	loop	forever	on	
some	inputs).		

2-19

Programs	that	loop	vs.	take	a	long	<me	
How	do	we	dis<nguish	programs	that	run	a	long	<me	from	ones	
that	loop?	

E.g.	3x+1	problem	(saw	this	back	on	slide	2-2).	

	

							f(x)	=	

	

Problem:	for	all	n,	is	there	some	i	such	that	fi(n)	=	1?		I.e.,	is	it	
the	case	that	itera<ng	f	at	a	star<ng	point	never	loops?				

No	one	knows!		This	is	an	open	problem!	

You	might	think	you	can	tell	when	a	Python	program	will	loop,	
but	this	example	shows	that	you’re	wrong!	

3x	+	1,			if	x	is	odd	

x/2,						if	x	is	even	

2-20

Hal<ng	Problem	
HALT(P,x):	Does	program	P	halt	when	run	on	input	x?		
(For	simplicity,	assume	P	and	x	are	strings,	and	P	is	a	program	in	
your	favorite	PL.)	

I.e.,	on	input	x,	does	P	terminate	amer	a	finite	number	of	steps	
and	return	a	result	

HALT	is	a	mathema<cal	func<on	that	is	provably	uncomputable.		

Why	do	we	care?	
–  Canonical	undecidable	problem.	
–  BIG	implica<ons	for	what	we	can	and	cannot	decide	about	
programs.	

2-21

Hand-wavy	intui<on	
•  Run	P	on	x	for	100	steps.		Did	it	halt?	
•  Run	P	on	x	for	1000	steps.		Did	it	halt?	
•  ...	
•  P	on	x	could	always	run	at	least	one	step	
longer	than	we	check	...	

But,	perhaps	we	can	be	cleverer.	Back	on	slide	
2-2,	we	didn’t	have	to	actually	run	the	programs	
in	order	to	determine	whether	some	halted	on	
some	inputs.		

2-22

Proof:	Hal<ng	Problem	is	Uncomputable	
Proof	by	contradic<on	using	diagonaliza<on.	
•  Suppose	HaltImpl(P,x)	is	an	implementa<on	of	HALT	in	your	favorite	PL.	

–  halts	on	all	inputs	and	returns	true	if	running	program	P	on	input	x	will	halt		
and	false	if	it	will	not.	

•  Define	Sly(P)	in	your	favorite	PL	as	the	following	program:	
–  Run	HaltImpl(P,P).	This	will	always	halt	and	return	a	result.	
–  If	the	result	is	true,	loop	forever,	otherwise	halt.	

•  So...	
–  Sly(P)	will	run	forever	if	P(P)	would	halt	and	
–  Sly(P)	will	halt	if	P(P)	would	run	forever.	
–  (Not	actually	running	P(P),	just	asking	what	it	would	do	if	run.)	

•  Run	Sly(Sly).	
–  It	first	runs	HaltImpl(Sly,Sly),	which	halts	and	returns	a	result.	
–  If	the	result	is	true,	it	now	loops	forever,	otherwise	it	halts.	

•  So...	
–  If	Sly(Sly)	halts,	HaltImpl(Sly,Sly)	told	us	that	Sly(Sly)	would	run	forever.	
–  If	Sly(Sly)	runs	forever,	HaltImpl(Sly,Sly)	told	us	that	Sly(Sly)	would	halt.	

•  Contradic<on!		No	implementa<on	HaltImpl	of	the	HALT	func<on		
can	exist!	 2-23

Let’s	be	more	concrete	
Suppose	someone	has	wriren	HaltPy	in	Python.			

	
	
	

2-24

def SlyPy (P_string): # Program arg is multiline string
 if HaltPy(P_string, P_string):
 while True: # loop forever
 pass
 else:
 return 'halted'

def HaltPy (P_string, x_string):
 # Program arg P_string is Python function as multiline string
 … # Code that always returns True or False.

You	write:		
	
	

fString = \
'''def f(x):
 return x+1''' # triple quotes for multiline Python strings

SlyPy(fString) # What does this do?
SlyPy(gString) # What does this do?
SlyPy(SlyPyString) # What does this do?

How	is	this	resolved	in	prac<ce?		

In	prac<ce,	any	Python	func<on	HaltPy	has	to	either:	
	
•  Loop	infinitely	on	certain	inputs	(i.e.,	it	never	returns		
True	or	False	on	these	inputs)	

•  Be	allowed	to	return	an	answer	that	means	
“I	don’t	know”	

	
	
	

2-25

Rice’s	Theorem:	
In	PL,	Uncomputable	=	Interes<ng	

As	a	consequence	of	what	is	known	as	Rice’s	theorem		
(see	CS235),	most	interes<ng	ques<ons	about	programs		
are	uncomputable	=	undecidable.		For	example:	
	
Will	this	program	ever:	
•  halt	on	certain	inputs	
•  encounter	an	array	index	out	of	bounds	error?	
•  throw	a	NullPointerExcep<on?	
•  access	a	given	object	again?	
•  send	sensi<ve	informa<on	over	the	network?	
•  divide	by	0?	
•  run	out	of	memory,	star<ng	with	a	given	amount	available?	
•  try	to	treat	an	integer	as	an	array?	

2-26

Proving	Undecidability	
There	are	two	approaches	for	showing	that	a	problem	is	uncomputable	=	
undecidable.		

1.  Use	diagonalizaCon	argument	like	that	for	HALT.	This	is	cumbersome.	

2.  Transform	an	exis<ng	undecidable	language	to	L	via	a	
technique	called	reducCon.		Much	easier	in	prac<ce:		

	
	
•  To	prove	a	problem	P	is	undecidable,	reduce	a	known	

	undecidable	problem	Q	to	it:	
–  Assume	DecideP	decides	the	problem	P.	
–  Show	how	to	translate	an	instance	of	Q	to	an	instance	of	P,	

	so	DecideP	decides	Q.	
(translaJon	must	halt)	

–  Contradic<on.	
•  Q	is	typically	the	hal<ng	problem.	

2-27

Reduc<on	or	The	Blue	Elephant	Gun		
Q:	How	do	you	shoot	a	blue	elephant?		

A:	With	a	blue	elephant	gun,	of	course!	

Q:	How	do	you	shoot	a	white	elephant?		

A:	Hold	its	trunk	un<l	it	turns	blue,	and	then		
				shoot	it	with	a	blue	elephant	gun!	

A

B

•
x	

•
f(x)	•

y	

•
f(y)	

A	(many-to-one)	reducCon	of	
A	to	B	is	a	func<on	f:	Σ*	→	Δ*	
such	that	x	in	A	iff	f(x)	in	B.		
		
f	must	be	computable	by	a	
termina<ng	program.		

Σ* Δ*
2-28

How	To	Use	Reduc<on			
In	proofs	by	construcCon:		

Given	a	B	that	is	known	to	be	solvable,	use	
it	to	solve	A.	

E.g.	A	=	sor<ng	the	lines	of	a	file		
							B	=	sor<ng	the	elts	of	an	array.			

A

B

•
x	

•
f(x)	•

y	

•
f(y)	

Σ* Δ*
In	proofs	by	contradicCon:		

Given	an	A	that	is	known	to	be	unsolvable,	
show	that	if	B	existed,	it	could	be	used	to	
solve	A.	So	B	must	be	unsolvable	too!	

E.g.	A	=	HALT		
							B	=	The	problem	you’re	trying	to	show	
														is	unsolvable.	

Reduc<on	 31-29

Example:	HALT_SOME(Q)	is	Undecidable	

•  HALT_SOME(Q):	

–  does	an	input	exist	on	which	program	Q	halts?	

•  Suppose	that	HALT_SOME(Q)	is	decidable		

•  Solve	HALT(P,x)	with	HALT_SOME(Q):	

–  Build	a	new	program	R	that	ignores	its	input	and	runs	P(x).	

–  HALT_ANY(R)	returns	true	if	and	only	if	P	halts	on	x.	

•  R(...)	always	does	same	thing,	so	if	one	halts,	all	do.	

•  Contradic<on!	

2-30

More	Concretely	(in	Python)	

2-31

Suppose	someone	has	wriren	HaltSomePy	in	Python.			

	
	
	

def HaltPy (P_string, x_string):
 R_string = \
 'def R(ignore):\n' \
 + P_string + '\n' \
 + x_string + '\n’ \
 + 'return P(x)’ # Assume defs named P and x
 # and indentation OK
 return HaltSomePy(R_string)

def HaltSomePy (Q_string):
 … # Code that returns True if Q is a string for a
 # one-argument Python function that halts on some input
 # and otherwise returns False

You	write:		
	
	

More	Concretely	(in	Python)	2	

2-32

def fString =
''' def P(y):
 return y+1'''

def numString =
''' x = 17'''

HaltPy (fString, numString)

Then	in	the	call	
	

'''def R(ignore):
 def P(y):
 return y+1
 x = 17
 return P(x)'''

R_string		is	the	string	
	

In	prac<ce:	must	be	conserva<ve	
Programs	that	take	programs	as	inputs	typically	can’t	
answer	“yes”	or	“no”,	Instead,	they	must	answer	"yes",	
"no",	or	"I	give	up;		not	sure.”	

For	example:		
•  type	systems	
•  garbage	collec<on	
•  program	analysis	
	
Alterna<vely,	can	restrict	expressiveness	of	system	
so	that	a	“yes”	or	“no”	answer	is	always	possible.	
E.g.,	Java	type	system.		

2-33

Early	Theory	of	Computa<on		
•  In	the	1920s	–	1940s,	before	the	advent	of	
modern	compu<ng	machines,	mathema<cians	
were	wrestling	with	the	no<on	of	effec<ve	
computa<on:	formalisms	for	expressing	
algorithms.		

•  Many	formalisms	evolved:	
•  Turing	Machines	(Turing);		CS235!	
•  Lambda-calculus	(Church,	Kleene);		CS251!	
•  combinatory	logic	(Schönfinkel,	Curry);	
•  Post	systems	(Post);	
•  m-recursive	func<ons	(Gödel,	Herbrand).	

•  All	of	these	formalisms	were	proven	to	be	
equivalent	to	each	other!		

2-34

•  Church-Turing	Thesis:	Computability	is	the	common	spirit	embodied	by	
this	collec<on	of	formalisms.	

•  This	thesis	is	a	claim	that	is	widely	believed	about	the	intui<ve	no<ons	of	
algorithm	and	effec<ve	computa<on.		It	is	not	a	theorem	that	can	be	
proved.		

•  Because	of	their	similarity	to	later	computer	hardware,	Turing	machines	
have	become	the	gold	standard	for	effec<vely	computable.		

•  We�ll	see	in	CS251	that	the	lambda-calculus	formalism	is	the	founda<on	
of	modern	programming	languages.		

•  A	consequence:	programming	languages	all	have	the	�same�	
computa<onal	�power�	in	term	of	what	they	can	express.	All	such	
languages	are	said	to	be	Turing-complete.		

The	Church-Turing	Thesis	
and	Turing-Completeness	

2-35

Expressiveness	and	Power	
•  About:	
–  ease	
–  elegance	
–  clarity	
– modularity	
–  abstrac<on	
–  ...	

•  Not	about:	computability	
•  Different	problems,	different	languages	
–  Facebook	or	web	browser	in	assembly	language?	

2-36

http://xkcd.com/1266/

“In	the	long	run,	we	are	all	dead.”			
–	John	Maynard	Keynes	

A	Humorous	Take	on	Computability	

2-37

Next	<me	

•  First case study: Lisp, Racket, and
functional programming

•  Clean slate approaching language.

2-38

