
The Programming Language Wars
Questions and Responsibilities for the Programming Language Community

Andreas Stefik

University of Nevada, Las Vegas, U.S.A.

stefika@gmail.com

Stefan Hanenberg

University of Duisburg-Essen, Germany

stefan.hanenberg@icb.uni-due.de

Abstract

The discipline of computer science has a long and compli-

cated history with computer programming languages. Histor-

ically, inventors have created language products for a wide

variety of reasons, from attempts at making domain specific

tasks easier or technical achievements, to economic, social,

or political reasons. As a consequence, the modern program-

ming language industry now has a large variety of incom-

patible programming languages, each of which with unique

syntax, semantics, toolsets, and often their own standard li-

braries, lifetimes, and costs. In this paper, we suggest that

the programming language wars, a term which describes the

broad divergence and impact of language designs, includ-

ing often pseudo-scientific claims made that they are good

or bad, may be negatively impacting the world. This broad

problem, which is almost completely ignored in computer

science, needs to be acted upon by the community.

Categories and Subject Descriptors D.3 [Programming

Languages]; H.1.2 [Information Systems]: User/Machine

Systems — Software Psychology

General Terms Languages, Human Factors, Experimenta-

tion

Keywords The Programming Language Wars; Stability of

the Academic Literature; Evidence Standards

1. Introduction

“It surrounds us and penetrates us; it binds the galaxy together.”

- Obi-Wan Kenobi in Star Wars

Modern society has seen a significant transformation with

respect to the discipline of scientific discovery. The advent

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Onward! 2014, October 20–24, 2014, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3210-1/14/10. . . $15.00.
http://dx.doi.org/10.1145/2661136.2661156

of computers has led to thriving industries for creating new

and innovative ideas. In Biology, chips that process datasets

so large as to be unthinkable 20 years ago are now easily an-

alyzed. Psychologists, medical researchers, physicists, and

the entire software industry, regularly use computations as

a core part of daily work. Without technologies that our

community invents as the core foundation, innovations in

some disciplines, like those the at the Large Hadron Collider,

would be effectively impossible to evaluate. In a sense, pro-

gramming languages bind the galaxy together, affording a

crucial role that no other discipline can lay claim to.

As computer scientists, while we hold many roles in re-

gard to these innovations, one is perhaps the most crucial:

we are the stewards of computation. By steward, we mean

that computer scientists, and especially programming lan-

guage designers, have made products that are fundamental

to advances in nearly all areas of science, massively influ-

ence academic computer science, and cause seismic shifts

throughout the software industry. Languages that we create

provide the foundation for how we explain to the computer

what we would like it to do.

Unfortunately, as is becoming increasingly obvious to

some, the computer science discipline has either been unable

or unwilling to solve many of the basic problems in program-

ming languages—perhaps notably, identifying the impact of

specific language designs on people. As a result, we find our

discipline in the situation where different developers and re-

searchers spend time on a divergent set of language prod-

ucts. Due to a variety of complex factors we will discuss, we

then find heated quarrels at different venues (e.g., academia,

conferences, offices) where competing groups argue for or

against particular languages or features—often with little

evidence to support competing claims. Broadly, these and

many other issues form the foundation of the programming

language wars, causing a variety of social ills. This includes

what in our view may be one of the most massive duplica-

tions of effort in human history.

Consider for a moment what actually occurs today in re-

gard to programming language use in practice. In academia,

students learn many language products, some of which are

quickly abandoned, replaced, or changed. Educational prod-

ucts are built and pushed even if the inventors have never

283

presented any evidence regarding the design’s impact on pro-

grammers or learners. In professional communities, the prob-

lems hold similarities. For scientists in other fields, develop-

ers in the software industry, or students starting out, these

individuals might assume that the designers have carefully

vetted the design decisions with evidence, but an ongoing

systematic analysis we have conducted on the literature has

found that this is almost never actually true [43]. In effect,

the simple fact that our major languages do not have evi-

dence showing that their design makes sense is self-evident

when we realize that, for novices, a randomly generated lan-

guage is about as easy to use as Perl or Java [44].

We write this work because the future of science and the

software industry depends, at its deepest level, on our com-

munity. Scientists and engineers in other fields we work with

generally expect we are a scientific community, which uses

evidence, creates theories, and uses the peer review process

to promote science, not beliefs. Thus, while we think the lan-

guage community’s focus on the mathematics of program-

ming languages is obviously appropriate for technical chal-

lenges, we argue here that this knowledge is necessary, but

not sufficient, for solving the observed chaos in the software

development world. Thus, we write here on what we call The

Programming Language Wars, a concept we will describe

throughout this essay.

What is this essay’s contribution? This essay con-

tributes in three ways. First, we describe the problems faced

by the broad scientific community because of the program-

ming language wars. Second, we define a set of questions

to the programming language community that need to be an-

swered if scholars are serious about solving, even partially,

the major problems that exist in language design today. Fi-

nally, we discuss the responsibilities the broad computer

science community has in regard to the language wars.

Structure of this essay. In the next section, we describe

the language wars itself, framing the problem and discussing

its many facets in regard to modern society, including its cur-

rent foundation of evidence. We then define a set of respon-

sibilities various groups or individuals have with respect to

the language wars. Finally, the last two sections summarize

and conclude this essay.

2. Framing the Language Wars

“Previous generations have been absolutely convinced that their

scientific theories were well-nigh perfect, only for it to turn out that

they had missed the point entirely.”

- Pratchett, Stewart, and Cohen, The Science of Discworld

In this section, the primary purpose is to discuss, while rec-

ognizing that our explanation of such a complex social prob-

lem will not please all scholars, what the programming lan-

guage wars are, including the roles people play in it. Using

the language wars analogy, we then move to an analysis of

the spectrum of views we have privately heard from scholars

on it. Finally, we provide information on the current founda-

tion of evidence in the language wars.

With this in mind, it behooves us to ask the obvious

question—what are the programming language wars? While

we decline to provide a formal definition, we think the lan-

guage wars has at least three fundamental components: 1)

language divergence, 2) language impact, and 3) language

communities. While we describe these ideas briefly in the

next few paragraphs, each is very complex and will be

fleshed out as we continue this essay. First, we observe

extreme divergence today in the field of programming lan-

guages. This language divergence occurs on a spectrum

from the deceptively trivial (e.g., what should the syntax of

a loop be?) to the debatably deeper (e.g., strong or weak typ-

ing? what kind of inheritance model?). Note that our claim

is not that divergence is good or bad; only that it exists. Ex-

amples of this issue will be discussed at length throughout

this essay.

Second, the language wars are related to what we term

language impact. This potentially includes both positive

(e.g., creative language solutions, features that positively im-

pact human productivity) and negative impacts (e.g., dupli-

cation of effort, societal monetary cost). The concept of lan-

guage impact is perhaps one of the most extraordinary mys-

teries in all of computer science and is poorly understood.

This issue is at the heart of our section on the foundation of

evidence in language design.

Finally, the language wars clearly involve language com-

munities. By this we mean, they involve a variety of actors,

with various roles. We think discussing these roles is impor-

tant for understanding the rest of this work. Thus, we de-

scribe them next.

2.1 Roles in the Language Wars

“And we have just one world. But we live in different ones.”

- Dire Straights, Brothers in Arms

We use the rather militarized term the “programming lan-

guage wars” throughout this work to describe the situation

in the software development world for two reasons. First,

the term implies an adversarial role in the community, or

at least one of competition. Second, while it is almost never

discussed in the peer-reviewed scholarly literature, we feel

that, despite its lack of formalization, many in the commu-

nity have heard the term informally.

As part of the language wars, it makes sense to think

about the roles the various actors have and how these

roles impact the success or failure of language products. In

essence, we acknowledge here that many individual partic-

ipants of the programming language wars, which naturally

encompasses a broad range of people (e.g., students, entry

level professionals, CEOs at major corporations), harbor dif-

ferent motivations for their participation. While our list is

hardly intended to be all encompassing, we elucidate it here

284

as an exemplar of the possibilities, beginning with what we

term owners and followers.

First, the concept of an owner is literal: we classify this

role as one that owns a programming language. Examples

would be Microsoft, which owns C#, or Oracle, which owns

Java, or the primary developers of a smaller language, like

Ruby. Owners, by definition, have a vested interest in the

success of a language product (e.g., fame, interest, belief,

money). Contrasting owners, we have followers, by which

we mean any individual involved in a language, regardless of

success (e.g., promoting it, using it) or failure (e.g., denounc-

ing it). While followers may not have the same motives as

owners, they may also have vested interests. For example,

those that learned programming using C, and that are famil-

iar with its syntax, might be more willing to adopt a C-like

language such as Java.

While owners and followers may have their own motiva-

tions, we define three additional roles that may be played

by either group: 1) believers, 2) dependents, and 3) volun-

teers. In the first case, we imagine believers as those that find

a particular language’s design convincing. This might hypo-

thetically be an individual that thinks that C# is better than

Java (or vice versa), that lambda functions are important for

a language to have (or not), or that a particular syntax is ele-

gant (or not). Belief by such individuals may or may not be

based on evidence.

A second role is that of dependents. In this case, we take

these individuals as those that need a particular language to

complete their work or that otherwise require the success of

a language for an external reason. For example, if a software

development house has a million lines of, for the sake of

argument, correct PHP code written in a server back-end,

then they are dependent on the success of PHP financially

(Facebook might serve as an exemplar). This can be the case

regardless of whether a group owns the language technology.

We call those in this category financial dependents.

In this same respect, students are also dependents in the

sense that they are typically required to use language prod-

ucts chosen for them by faculty. While this is normal, it is

important to recognize that it sometimes takes students years

to learn a language like C++ competently. As such, with that

time invested, students are dependent upon the success of

the language or its constructs. We call individuals in this sit-

uation intellectual dependents. Obviously, the two are not

mutually exclusive.

Finally, the logical opposite of the dependents is the vol-

unteers. In this group, programmers may experiment with,

or otherwise use, a programming language for their own rea-

sons. Such users may fall into categories like early adopters,

trying Apple’s Swift because they want to. Similarly, they

may enjoy using a variety of language products for personal

reasons. The point is, volunteers are those that have little

practical vested interest, financially or intellectually, in the

success of a language product. There may be a spectrum be-

tween dependent and volunteer.

While we imagine it is obvious to most readers, we want

to point out that our description of roles barely scratches the

surface. We mention them at the relative beginning of this

paper because we think it is important to acknowledge that

the programming language wars has participants. While our

roles are not exact, they do give us a rough baseline by which

to think about the various groups. With this in mind, we

can now move to what we call the language wars spectrum:

possible outcomes or results of the language wars.

2.2 Possible Outcomes of the Language Wars

We begin this discussion with two diverging points of view,

each being an extreme position we have heard from scholars

toward what would stop the programming language wars.

The first view we call “One Language to Rule Them All,” the

idea where the only possible resolution to the language wars

is for all possible developers under all possible conditions

to use the same language. Next, we move to the opposite of

this view, which we will call “Unique Snowflakes,” where all

developers, under all possible conditions, are so unique that

they need their own programming language. We point out

these extremes for two reasons: 1) we actually hear claims

like this from language designers, scholars, and developers, 1

and 2) such views are difficult for us to believe without

supporting evidence—by discussing them we become aware

of the fact that more balanced points of view need to be

considered. This leads us to our first research question:

RQ

In the future, what point on the spectrum be-

tween “One Language to Rule Them All” and

“Unique Snowflakes” is desirable?

2.2.1 One Language to Rule Them All

“One Ring to rule them all, One Ring to find them, One Ring to bring

them all and in the darkness bind them.”

- The Lord of the Rings

One belief we have commonly heard amongst programming

language designers, scholars, and users, is the mistaken view

about the language wars that any solution must account for

all possible tasks under all possible conditions. We reject this

view, finding it little more than a characterization of possible

outcomes of the language wars. In this section, we discuss

this belief, which we call “One Language to Rule Them All.”

Consider for a moment why the One Language to Rule

Them All belief is invalid in its purest form. We see many

possible reasons, but point out just a few we consider im-

portant, namely: 1) humans vary, 2) problem domains vary,

and 3) even a perfect language, if it were created (some-

how), may not be adopted. First, while some developers

1 Out of professional courtesy, we ask readers not to ask us which individu-

als have made such claims; we decline to say.

285

will take the obvious fact that developers have natural vari-

ation in their needs and abilities as arguing for the Unique

Snowflakes view, it is important to recognize that develop-

ers vary, while also recognizing that this variation is not as

high as many believe. For example, in the authors’ studies on

language design, we typically post demographic information

in our experiments. However, while we talk about it little in

these works, it seems to us that variation amongst most sam-

ples are less important than the wide demographic variance.

For example, consider that children in school in many

countries are now learning computer science at an in-

creasingly younger age, in part because organizations like

Code.org have helped bring awareness, but also because

many educators realize that they live in the 21st century—

programming is now a fundamental and basic skill. Many

young students likely want to solve problems their elders

do not, like perhaps wanting to learn how to program an-

imations or games, or any other variety of activities. On

the other hand, professional programmers working at NASA

obviously have different needs, which probably require dif-

ferent languages or libraries. Put more crudely, we harbor

doubts that almost any serious application created by profes-

sionals is done in Alice or Scratch, let alone the next gener-

ation of space shuttles, but we also recognize that children

might learn the foundations of programming with such tools.

This brings us to a research question:

RQ

What language designs help the largest user

base possible under the greatest number of cir-

cumstances?

Second, separate from needs of users, we need to con-

sider that scientists and private industry uses programming

languages for a wide-variety of goals. This includes applica-

tions as varying as bio-engineering, physics, to video games

or movie editing, amongst many others too numerous to men-

tion. While it is clear that many applications can be cre-

ated with languages that exist today (e.g., many applications

are written in Java or C++), some application domains may

benefit from having a unique programming language. While

many potential areas could be pointed out, we think one ob-

vious one is in parsing, where tools like Antlr provide con-

cise ways to represent parsing rules that can be genuinely

complex when written by hand in a language like C or Java.

We admit, however, that we know of no concrete evidence

on this point, nor can we ascertain with any kind of mathe-

matical certainty exactly which domains may require a new

language and which do not. We suspect that, when history

is written, the number of times authors have claimed a new

domain specific language was needed will be considered a

significant exaggeration.

From another perspective, with our third point,

Meyerovich and Rabkin [32] point out that why a pro-

gramming language is adopted is a complex question

involving many factors, including some as seemingly

mundane as what language one previously programmed

in—evidence for what we previously called intellectual

dependence. Even a somehow perfect language may not

be adopted. The reasons for not adopting such a perfect

language might, among many possible factors, depend on

market observations or network effects. For example, if

developers assume that a certain language will be main-

tained for decades or is in common use, working with it

may be perceived as more reasonable, despite perceived or

actual imperfections. This leads us to the following research

question:

RQ Which domain specific languages benefit hu-

mans?

Such a question implies a number of different perspec-

tives. This includes at least estimates regarding the future of

the language, availability of developers, learnability, usabil-

ity, or other concepts. To give a specific example, we know of

no evidence that the programming language R makes statis-

tics work easier to accomplish than having a statistics API,

with similar features, built into another language. Given this,

whether R is needed requires more evidence than proofs that

a particular statistical calculation, or language feature, works

or is fast.

2.2.2 Unique Snowflakes

The Lord said, “If as one people speaking the same language

they have begun to do this, then nothing they plan to do will

be impossible for them. Come, let us go down and confuse their

language so they will not understand each other.”

- Genesis 11:6–7, New International Version

If we take the logical opposite of One Language to Rule

Them All we obtain what we call Unique Snowflakes—the

idea that all developers need a unique programming lan-

guage for all possible tasks. Before discussing the issue, we

point out that this view is refuted by empirical evidence in

the literature. We discuss two issues, namely that 1) it is not

supported by existing evidence and that 2) erring too close

to the Unique Snowflakes view in society may have negative

consequences, especially for the scientific community.

First, and most crucially, we think there already exists

evidence in the literature showing the Unique Snowflakes

view is unlikely to be valid. Consider for a moment what

the empirical data would have to look like if it were to

be reasonable. Namely, developers need to vary so widely

that no consistent measures can take place—this view is not

what we observe from careful measurements of programmer

behavior so far.

For example, consider the study by Rossbach et al. [39],

which showed nearly an 8-fold difference in bug rates be-

tween a software transactional memory based solution when

compared to course or fine grained locks. Or, consider that,

286

in nearly all replications of studies on static or dynamic typ-

ing (e.g., with or without a development environment, with

or without documentation, the use of generics), that static

typing appears to increase programmer productivity on aver-

age [12, 25, 31]. In studies of novices, differences in syntax

have significant explanatory power, as judged by the eta val-

ues reported by the studies, in saying why we observe that

some languages are easier to understand and use initially

than others [44]. Put succinctly, every study, and every fu-

ture study, that documents that programmers on average do

better/worse with one language feature over another increas-

ingly refutes the Unique Snowflakes view of the world.

Second, even if all the previous evidence is incorrect, bi-

ased, or flawed in important ways, this does not automati-

cally imply that we should promote the Unique Snowflakes

view. Modern society requires programmers work together

and it seems all too obvious that if all programmers had their

own language, collaboration would be more difficult, if not

impossible. Put another way, even if people have measurably

unique needs under all or many conditions, this does not im-

ply that society obtains a tangible benefit from extreme lan-

guage divergence.

We think one tangible area that may not benefit from di-

vergence is syntax. Historically, while few question the cre-

ativity associated with creating new language products, it is

important to recognize that papers often study one feature,

while simultaneously combining interesting and new ideas

with modifications to old ones. For example, many program-

ming languages vary how to write a loop, without evidence

that the approach is “better” nor often even with public rea-

sons why the syntax is different from other alternatives. We

think scholars and practitioners need to demand more ev-

idence from scholars on such issues, especially when lan-

guage designers make claims. This is especially true given

documented evidence from several studies showing that syn-

tax has a significant impact on novices [8, 9, 44] and that

compiler error design impacts professionals [40].

2.3 What is the Societal Impact of the Language

Wars?

Another issue of importance in regard to the broader pro-

gramming language wars is its impact on the world at large.

This effect is difficult to quantify, in part because computer

scientists often seem to find talking about the language wars

to be taboo in peer-reviewed research, and in part because

little scientific research has been done on the language wars

as a phenomenon itself. In this section, while first admitting

that evidence on the societal impact of the language wars is

difficult to gather, we take a first attempt at discussing what

we see as the consequences of this problem. We focus our

efforts on issues we think are important to academia and in-

dustry, including duplication of effort and cost.

In academia, we think few computer scientists have come

to terms with just how fractured the programming language

community is. Consider a short survey undertaken by the cur-

rent authors. While we know of no systematic analysis of the

types and kinds of programming languages used at colleges

and universities across the United States, or the world, it may

be enlightening to capture this information on a global scale.

While an admittedly inadequate start, we began such an anal-

ysis by conducting a short survey of 39 colleges and univer-

sities in the mid-west, analyzing only what languages were

used by these schools in the introductory course. Of these,

approximately 9 programming languages were used, includ-

ing C, C++, Alice, VB, Python, Java, C#, COBOL, and ADA.

Evidence that each of these choices make sense, as a whole

or in terms of individual language features, cannot be estab-

lished from the literature.

Differences in instruction within academia aside, industry

also is highly fractured in regard to its use of programming

languages, both in regard to variations in adoption (as has

been studied recently) and in regard to libraries and toolkits.

For example, in NetBeans 7.4, we counted a total of 466

different toolkits as being available for use as Javascript

libraries. Such toolkits, which are basically small additions

to Javascript, provide developers capabilities out of the box

for coding on the web. To most scholars, this should come as

no surprise and the situation is similar for other languages. In

practice, when developers adopt a language, they generally

garner access to very large standard libraries and extensions,

for good or ill. Some may consider this just an expression of

our community’s creativity and on the surface this view may

seem appealing. We are concerned, however, that such large

divergence is lowering productivity on a societal scale.

Second, given the number of languages, toolkits, and

frameworks, it seems clear that there is duplication of ef-

fort in the programming language community. As a trivial

example, while we think that academic circles themselves

often have checks and balances in the peer-review process to

ensure originality with scholarly papers, this seems to be vir-

tually non-existent with the software our community creates.

Consider that for new languages, constructs such as hash ta-

bles, lists, networking APIs, speech APIs or other available

libraries are reimplemented, leading us to our next research

question:

RQ

Of the time used in developing programming

languages, what percentage was spent reinvent-

ing the same solution (e.g., a HashTable in Java

vs. C#)?

While there is little debate that changes to languages

can have benefits, sometimes even minor changes to new

languages (e.g., differences in loop structures), or in some

cases patent or copyright issues, impact whether parts of

a standard library can be reused. Naturally, this leads to

corporations like Oracle (or Sun) creating the entire JDK,

with others creating all of .NET, an obvious duplication of

effort. When we look broader, at the C++ standard libraries,

libraries for Ruby, Perl, Python, or other technologies, and

287

additionally look at APIs that developers in smaller projects

reimplement over and over again in different languages, we

are suspicious the community as a whole would benefit

if duplication of effort were reduced across technological

sectors.

For software companies there is a different perspective,

which depends on market constraints. If, for example, Mi-

crosoft decides to develop a language such as C# as a com-

petitor of the programming language Java,2 the duplication

of effort must have initially been considered worth the cost.

However, for single developers that actually use one lan-

guage and need to write similar code in a different one, the

corresponding duplication of code becomes problematic. It

seems to be especially serious as soon as multiple clients are

required to write the same or similar code snippets in differ-

ent languages—in other words, while companies may debat-

ably benefit from duplication, clients may not. This leads to

another research question:

RQ

Of the whole time used in software develop-

ment, what percentage was spent reimplement-

ing the same solution in a different language?

With the idea in mind that many language designers and

adopters of new languages have reinvented the wheel many

times throughout history, we also want to point out that it

is not entirely clear whether this duplication of effort was

worth it. For example, we harbor doubts that yet one more

implementation of a hash table, in yet one new language,

should automatically be considered positive. Similarly, we

harbor doubts that yet one more way to write a loop in core

language syntax is worth investigating or funding, unless

the new method also takes into account the language wars

broadly—using evidence to make decisions or changes. Be-

fore we can begin to ask whether an investment is worth it,

though, we need to begin measuring it, leading us to the next

question:

RQ

What is the total cost throughout history of de-

veloping all computer programming languages,

supporting libraries, and tools?

Given that many languages exist, one other concern we

have about the programming language wars is that it seems

reasonable to assert that groups that change programming

languages, which is common because of the speed at which

our discipline changes, must ultimately redo work and adapt

their technologies (e.g., porting). In some cases, such port-

ing procedures are straight-forward. For example, moving

between new versions of Java or C++ may require effort, but

would be arguably less effort than converting from Fortran

2 see for example corresponding articles such as http://

news.cnet.com/2100-1001-242268.html\&title=

Microsoft-brewing-Java-like-language\&desc=--+

CNet+article

to Perl. In academia, the situation is similar. When faculty

members change language products, say from C++ to Java,

as has been common in recent years, textbooks, tutorials for

parts of the standard libraries, slides, assignments, and exam-

ples all must change to the new approach. This leads us to

our next research question:

RQ

What is the total historical productivity lost

by switching/updating programming languages

in various settings (e.g., academic, industrial,

military)?

Further, if we imagine that, over time, language designers

and academics became increasingly reliant on valid and re-

producible evidence in making decisions, it stands to reason

that at least some aspects of language design would cease to

be replicated in new languages. For example, while our tests

only encompass a small set of possible solutions compared

to the whole, the empirical data we have gathered leads to

some conclusions. Consider the four alternative looping con-

structs listed in Figure 1, which shows outputting the word

“Hello-” and a counter variable on the screen 10 times.

New language designers might think changing syntax

for a loop is an expression of creativity, but we are suspi-

cious it is more in line with ignorance of the available ev-

idence [8, 9, 44]. While we mean no language in particu-

lar, a mathematically correct and reasonable language may

very well be hard to understand. Given the wide proliferation

of products we create for academia and the software indus-

try, whether a construct is clear is a decision that should be

based on hard evidence, not just opinion and argument. In

this case, evidence in studies is clear—the word “for” makes

little sense to novices, for reasons that should be obvious,

compared to words like “repeat.” More crucially, if the syn-

tax of a language is different, the standard library must also

be different, often leading to duplication of effort and rein-

venting the wheel. This line of reasoning leads us to the next

research question:

RQ

If language designers created languages with

an increasingly larger evidence base, what

would the impact be over the next century?

Overall, our point in this section is that the language

wars is having a significant impact on society as a whole.

From our perspective, the impact is largely negative. While

societal issues are never solvable by one research group,

and the language wars is a deep problem with many factors,

investigating the impact on society needs to be done if we

want future generations to not look back on our work with

surprise—wondering why it took us so long to even run a

study on, for example, the syntax of a loop. This issue of the

foundation of evidence is the next topic of discussion in this

work.

288

i = 0

repeat 10 times

i = i + 1

output "Hello-" + i

end

(a) Quorum

hello(X):-

(X > 10, !);

(write(’Hello’ - X), Next is X+1, hello

(Next)).

:-hello(1).

(b) Prolog

1 to: 10 do: [:i |

Transcript show:

’Hello-’, (i asInteger)].

(c) Smalltalk

for(int i = 1; i <= 10; i++) {

System.out.println("Hello-" + i);

}

(d) Java

Figure 1. Loop styles in various programming languages that output a string and a counter variable.

2.4 Language Design Needs a Stronger Foundation of

Evidence

“You know nothing, Jon Snow.”

- Ygritte, Game of Thrones

In recent years, many authors have shown increasing con-

cern about the stability of evidence in academic computer

science, including programming language design. Before

diving into language design, however, let us first take a

slight detour to the field of software engineering, as authors

from this community probably started the trend toward re-

analyzing the history of our evidence practices, with a criti-

cal eye.

In the mid-1990s’s, Tichy argued that the field of software

engineering was in disarray, largely because authors were

continuously publishing non-evidence based work. By non-

evidence based, what was meant was that even prestigious

journals were publishing what amounted to opinion pieces,

not backed by data and observations [50]. As Tichy states:

There are plenty of computer science theories that

haven’t been tested. For instance, functional program-

ming, object-oriented programming, and formal meth-

ods are all thought to improve programmer produc-

tivity, program quality, or both. It is surprising that

none of these obviously important claims have ever

been tested systematically, even though they are all 30

years old and a lot of effort has gone into developing

programming languages and formal techniques.

This claim by Tichy was not one of opinion, stemming

from a careful reading, and cataloging, of the literature in

comparison to other disciplines. There is no nice way to say

it—Tichy showed evidence that software engineering as a

discipline was exhibiting pseudo-scientific practices. Other

disciplines were using data and observations, while software

engineers were using anecdotes, with sometimes authors

arguing against even the idea of experimentation. As Tichy

notes, many at the time argued that experimentation was,

“inappropriate, too difficult, useless, and even harmful”—

arguments we feel match closely to those made by some

language researchers today. Recent work exploring similar

ideas found that the field of software engineering is still

lagging considerably behind in its academic rigor [26].

While the evidence practices in software engineering

have been investigated since the mid-90s, this has not yet

been fully completed in the programming language design

community. For example, while some are familiar with

works summarizing the literature on novices [23] or end

users [27], these works talk about what is in the literature,

but do not investigate whether what is in the literature is

correct or exhibits stable knowledge that can be relied on.

In the literature, however, several scholars have claimed that

our community has similar problems. This includes at least

Tichy, Markstrum [30], and Hanenberg [16].

To our knowledge, however, the first work to attempt to

formally document the evidence practices of the program-

ming language community was conducted only recently by

the current authors and our research collaborators [43]. This

work is preliminary, only evaluating scholarly workshops on

language design, but the results showed clear evidence that

the community was not using high quality evidence gather-

ing techniques. Work on more prestigious venues, like OOP-

SLA, ICFP, or others, are in progress, but our suspicion from

looking at the approximately 1700 other papers we have cat-

aloged so far, in addition to those discussed in the cited work,

is that the evidence practices may in fact be worse in these

venues. In short, with notable exceptions, the programming

language community has used little empirical data regarding

the impact of products used by millions of people in nearly

its entire history. This unfortunate observation forces us to

seriously question the scientific validity of any claim made

by a language designer that does not have actual data in hand

that we can double check and replicate. This leads us to a

research question in regard to the evidence practices of the

programming language community as a whole:

289

RQ

How can we increase the programming lan-

guage design community’s evidence standards?

We readily admit that we do not know the answer to the

previous question, but do want to offer some limited specu-

lation that others can freely explore, hopefully to refute or

improve our guesses. One possibility as to why the language

community has not been gathering rigorous evidence, be-

yond technical considerations, is that in academia, there is lit-

tle incentive to do so. Papers can be published perhaps even

more easily with small incremental changes to existing work.

Further, given that academic institutions often rely consider-

ably on paper counts, literally the number of papers an aca-

demic publishes as a metric, academics are directly discour-

aged from working to alleviate hard and long-standing prob-

lems that might take years of hard study if it leads to only

one, or a few, publications. In other words, while we admit-

tedly have no direct observations, we wonder whether mod-

ern methods for evaluating tenure and promotion are having

a negative impact on the quality of work in the academic

literature.

Evidence issues aside, while the literature is currently

sparse, given that the current authors have had considerable

contact with the language community, we want to be clear

about one fact: from our perspective, while there may not be

much evidence in the literature in regard to issues like lan-

guage impact, we do think language designers care deeply

about such issues. We think one way in the future that it

might be possible to thus make progress is in the creation of

a formal catalog of language features, their impact on peo-

ple, and standard reproducible tests, with corresponding ev-

idence. For example, in psychology, scientists have created

the DSM-5 [1], a rigorous collection of assessment proce-

dures for a variety of psychological conditions. With pro-

gramming languages, creating a standard collection of all

assessments ever done on type systems, syntax, or other fea-

tures and documents on how to easily replicate them, could

go a long way toward giving language designers reliable,

replicable, scientific information about impact. This leads us

to our next question:

RQ

Can we create a catalog, using the DSM5 [1]

as an exemplar, for reliable tests on language

impact?

3. Stewardship and Responsibilities

“Now naturally, like many of us, I have a reluctance to change too

much of the old ways.”

- Kazuo Ishiguro, The Remains of the Day

Given that language designers are the stewards of computa-

tion in the sense that our community develops foundational

products for which the world’s software is built upon, it

makes sense to ask what our responsibilities are. In this sec-

tion, we look at the programming language wars from a dif-

ferent point of view. While recognizing that this problem

may be one of the most challenging in computer science,

which does not have an easy or straightforward solution, we

discuss here a possible path forward. In this context, we dis-

cuss how various communities can contribute to alleviating

aspects of the language wars over the next century.

Thus, we look now at individuals and communities, dis-

cussing their role in the language wars, including where they

have succeeded or failed. Throughout this process, we pro-

vide our view on possible activities they could undertake that

may help in the long run. While it should be obvious, we do

not have all the answers, nor do we pretend to have some

type of guarantee that our suggestions will be beneficial. We

point out, however, that many communities are doing little

to investigate or fix a major social ill in our discipline.

3.1 Responsibilities of Individual Researchers

Individual academic scholars have an array of responsibili-

ties at modern universities, including their duties in working

toward solutions to genuinely hard problems. We argue in

this section that individual scholars and researchers have a

crucial role to play in the language wars. In this section, we

provide tangible suggestions that we think may help individ-

ual scholars contribute.

3.1.1 Provide Evidence of a Problem’s Impact

“Tell me one last thing,” said Harry. “Is this real? Or has this been

happening inside my head?” [...] “Of course it is happening

inside your head, Harry, but why on earth should that mean that it

is not real?”

- J. K. Rowling, Harry Potter and the Deathly Hallows

Computer scientists and programming language researchers

are adept at constructing examples that illustrate a situation

that could be considered as a problem. Typically, a problem

statement is used as a springboard for explaining a poten-

tial solution. As an example, consider the first paper about

aspect-oriented programming [24], which stemmed from a

background in programming language design, formal meth-

ods, meta-object protocols, gray box testing, compiler con-

struction, etc. While there was a history to why AOP was

developed, we can find no evidence in the literature that

the original problem was based on documented evidence. Of

course, we understand all too well why this is often the first

step in science. However, while thinking about a potential

problem is an important first step, modern science in other

disciplines, when publishing at major journals, usually re-

quires authors go deeper, a step sometimes missed in our

discipline. This brings us to the first responsibility of an in-

dividual scholar in language design:

290

Resp.

Problem statements should include repro-

ducible, verifiable, evidence that the stated

problem has impact.

There are different ways to identify whether a problem

has impact, including at least: 1) controlled experiments, 2)

field studies, 3) code repository analyses, 4) surveys, and

other techniques. All of these methods permit us to give evi-

dence that a particular situation has enough of an impact that

it can be detected and replicated by other research groups.

Such techniques can often confirm, and importantly refute,

that a problem matters, which can be tested by trying to

detect harm. For example, if scholars identify loss of per-

formance in runtime behavior of computer systems, loss of

productivity in human software developers, decreased learn-

ability with students, loss of maintainability, or other factors,

these would qualify. Generally, while it should go without

saying, the greater the language impact, seemingly the more

important the problem may be.

3.1.2 Provide Evidence that a Solution Helps

“I checked it very thoroughly,” said the computer, “and that quite

definitely is the answer. I think the problem, to be quite honest with

you, is that you’ve never actually known what the question is.”

- Deep Thought in Douglas Adam’s Hitchhiker’s Guide to the

Galaxy

If we continue with the AOP example, we find that aspect-

orientation is a technique that is now commonly discussed in

the literature. Some in the research community have argued

that its success is paradoxical [45]. On the one hand, it seems

clear cross-cutting concerns are real—we really can come up

with examples, like logging, where an AOP solution feels

cleaner or nicer. Or, we can discuss large code bases and the

potential need to weave code throughout them, which feels

appealing to some scholars.

However, consider empirical investigations into aspect-

oriented programming conducted by scholars that are inde-

pendent from the original research group [2, 11, 12, 17].

In such a case, when the situation is considered more care-

fully and actual developers are asked to program using the

new techniques, the claimed benefits of AOP are not sup-

ported. Careful measurements refute the AOP community’s

opinions that such techniques are helpful, which should give

pause to any scholar thinking carefully about whether the

original problem was impactful or that the proposed solu-

tions help. Oddly, however, the first at scale experiment

from an independent research group on AOP appeared to

take place more than a decade after the original paper. By

that point, young scholars working toward tenure and pro-

motion, if they were involved in such a community, would

have a vested interest to ignore results showing the research

direction does not solve the original problems—changing re-

search directions can be difficult and risky.

Consider another example, in this case the use of gener-

ics. The study by Parnin et al. shows how frequently generic

types in Java are used [34]. While the technical aspects of

generics were published at a large variety of venues (see

e.g., [3, 21, 33] among many others), the results of this study

indicate that generics are used relatively little—although it

should be mentioned that in an extended version of the study,

the authors see at least some upward trend [35].3 Other ex-

amples of such studies are the one by Gil and Lenz [15]

where the authors study the frequency of method overload-

ing in class definitions or the study by Callau et al. [5], where

the authors study the use of dynamic language features in

Smalltalk.

One interesting characteristic of the previous studies is

that language constructs are being tested long after they

were invented. Yet, even before these studies, many claimed

that the constructs were helpful and in some cases they

had world-wide impact. To give an example from today,

many programming languages are now integrating features

from functional programming. Yet, when we analyze every

paper ever written at ICFP, which we have done internally

and coded formally, this community consistently argues that

functional programming is beneficial, yet also provides no

evidence, other than purely technical definitions—necessary,

obviously, but not sufficient. Tichy appears to be correct; our

communities are integrating features without evidence. This

leads us to our second responsibility:

Resp. Individual scholars need to significantly in-

crease their evidence standards.

3.1.3 If it Ain’t Broke, Don’t Fix it

“So, I guess, like, now we just have to start over and start

rebuilding everything like our houses, but ... I was thinking maybe

instead of houses we could live in teepees, cause it’s better in a lot

of ways.”

- Richie Norris in Mars Attacks

In the previous section, we discussed that individual schol-

ars should challenge themselves to provide an increasingly

larger amount of data and evidence in academic papers, es-

pecially in regard to evidence with whether a language solu-

tion has impact, works, and actually helps the community as

a whole. In this section, we turn to a different problem that

must be considered by individual programming language re-

searchers and scholars, namely: only change those language

features for which there is direct observable evidence that

they should be.

Consider a hypothetical example. Suppose a language de-

signer has just invented a new programming language fea-

ture. This feature, it is claimed, is beneficial. Assume as

3 In terms of human impact, one study showed that generics help developers

who use an API that uses generics in comparison to raw types in the

interface description (see [19]).

291

well, for the sake of argument, that this scholar followed our

guidelines from the previous sections. They have provided a

formal proof that the feature worked, conducted a random-

ized controlled trial with human beings showing the feature

had a positive impact, and conducted surveys with industry

partners, which collectively provided a solid foundation of

evidence. From this, we would conclude that the researcher

has done their due diligence, plausibly obtaining several pub-

lications and doing their job as a scholar adequately.

Now suppose, however, that this scholar expands their

work, embedding it into a new language with their own com-

piler. For building such a compiler, the scholar has at least

two options: 1) recognizing that it is not always possible,

build the feature into an existing language with the feature

embedded, or 2) to construct a new language that includes

the feature. Given our observations of the research literature,

and programming languages in the field, we harbor doubts

that scholars are making sensible choices here, which we ex-

emplify by starting with a discussion of Java and Boo.

Let us first consider Java, where we find a number of

different ways to iterate over a collection (e.g., for-loop,

while loop over an iterator, foreach syntax since Java 5).

These methods harbor the same semantic goals, to iterate,

but are syntactically different. When the language designers

change the language, features like this seem to appear when

new versions arise. Although it seems commonly accepted

that the main goal of Java 5 was the introduction of generic

types, for example, new syntax constructs appeared with no

backing evidence for or against their use [19].

Consider as another example the language Boo and its

blueprint Python. First, Boo explicitly advertises differences

such as the static type system and type inference. As is now

known, there is some evidence that static type systems, at

least those with a declarative type system, help developers

be more productive under a wide variety of conditions (e.g.,

with an IDE, without an IDE, with documentation, without

documentation) [12, 25, 31, 37, 42, 46–48]. Hence, while the

inventors of Boo may or may not have known the evidence,

this decision appears to be supported.

Second, while the Boo authors, so far as we can ascertain,

provide no evidence, Boo also introduces a number of acci-

dental or spontaneous changes such as different usages of

imports. 4 Or, Boo has what it calls Generator Expressions,

a “for in” loop, to use the author’s terminology from the Boo

Manifesto. Further, Boo allows the programmer to turn off

the static type system (so-called Duck Typing), a decision

not supported by the literature on type systems. The Boo au-

thor describes this as follows:

Sometimes it is appropriate to give up the safety

net provided by static typing. Maybe you just want

to explore an API without worrying too much about

4 See https://github.com/bamboo/boo/wiki/

Gotchas-for-Python-Users for a more complete description

of differences between Boo and Python

method signatures or maybe you’re creating code that

talks to external components such as COM objects.

Either way, the choice is yours not mine.

Taking into account that the previously mentioned studies

show that static typing helps when exploring an API, and

taking into account that no other studies show the opposite,

the previous statement about the appropriateness of giving

up the safety of static typing for exploring an API must be

called factually incorrect. While evidence exists in this case,

where there is none, claims should be checked to see if they

hold up to scientific tests of correctness. More crucially, for

authors of programming languages, the spontaneous change

of programming languages features without evidence should

be avoided. While we have no doubt that some will find such

changes harmless exploration, we feel that non-evidence

based language divergence, such as this, are of debatable

utility and may impact software maintenance in the long-

term. Thus, we are led to our next responsibility:

Resp. Do not change language features without back-

ing evidence.

3.2 Responsibilities of the Programming Language

Community

“Start by doing what’s necessary; then do what’s possible; and

suddenly you are doing the impossible.”

- Francis of Assisi

While these responsibilities were directed to single scholars,

researchers, or language designers, like those that invent new

constructs, we think it is important to discuss the responsibil-

ities of the programming language community. By program-

ming language community, we mean those scholars, authors,

or designers that accept new languages or advertise new lan-

guages to be used in teaching and research. In this section,

we are also serving our discussion to programming language

review boards at conferences, journals, and scholars at fund-

ing agencies. While we admit readily that academic scholars,

let alone individual authors, can only do so much to attack a

problem as complex as the language wars, it’s naive to think

that a community cannot make progress over long periods

of time. Thus, we describe here our thoughts on what can

be done, focusing on taking ownership of the problem and

community outreach.

3.2.1 Impose Science on Chaos

“We impose order on the chaos of organic evolution. You exist

because we allow it and you will end because we demand it.”

- Sovereign, Mass Effect

Both in an industrial and educational context, little academic

work is conducted or funded to evaluate the language wars.

292

Entire communities at the National Science Foundation are

dedicated to educational computer science, but such pro-

grams generally do not discuss this issue, despite the fact that

this can lead to peculiar decisions caused by the state-of-the-

practice. For example, the excellent high school curriculum,

Exploring Computer Science, includes within it a variety of

programming languages. This decision, to use more than one

programming language in a curriculum for relatively young

children, is reflective of the discipline, for good or ill. In this

section, we discuss the types of research we think the fund-

ing agencies, academic program committees, and journals in

language design, should be encouraging.

First, while an outsider to the computer science commu-

nity might rightfully ponder why we have not yet done it,

we need significantly more competitive analysis amongst

language tools. At conferences such as ECOOP, OOPSLA,

POPL, etc. the languages C, C#, Java, JavaScript, Python,

Haskell, Scala, OCAML, F#, Scheme and Lisp are com-

monly discussed. While using a particular language is al-

ways fine for scholars exploring the world around them, from

our perspective, the language wars have been at least par-

tially caused by a lack of formal tests comparing aspects of

language products. While we understand some in these com-

munities are mathematicians, or designers, decisions related

to language impact still require evidence. This leads us to

our first responsibility for the community:

Resp. Investigate whether language features benefit

programmers in practice.

Second, committees need to encourage more investiga-

tion of the mystery and implications of the language wars.

This includes analyzing how divergence of languages is im-

pacting other disciplines. As just one example, we think it

would be good to know how language divergence is impact-

ing chemists or physicists. Additionally, we know very little

about how the divergence of language products is impact-

ing education or the software industry generally. While we

think the result of the language wars is probably negative,

we would argue that no scholar really knows—computer sci-

entists do not investigate one of the most impactful problems

in all of computer science. To be clear, we have heard many

scholars in our community argue, if the reader will excuse

a generalization, that the free market will work it out on its

own. We reject this argument, finding it naive. If the free mar-

ket could solve the language wars, it probably would have

already. This leads us to our next responsibility:

Resp:
Investigate the divergence of programming lan-

guages.

To give an idea of what an investigation of the language

wars might look like, studies could analyze both languages

as a whole and language features. A good starting point for

analyzing language features would be those that are already

available in most languages (e.g., loops, side-effects, func-

tions or procedures, parameter passing, etc.) and the tech-

niques for these studies would probably include controlled

experiments. However, the previously mentioned studies by

Parnin et al, Gil and Lenz, Callau et al, and Souza [5, 15,

34, 41] that study use of language features in existing code

repositories may give us usage information, although deter-

mining causality is typically easier with the former for well

known reasons.

Finally, language conferences and journals spend too

much of their time investigating issues that, to our eyes, are

of lesser importance. For example, type soundness proofs

are common. We never seem to ask, however, “Does type

soundness matter?” While we do not doubt the proofs, as

they are self-apparent, we harbor doubts that continued pub-

lication of type soundness proofs will push forward the state

of the art in a meaningful and important way, while also rec-

ognizing that they are sometimes necessary to make a point.

This is true in our view, especially, because many of the most

popular programming languages are not type sound. While

type soundness is just one example, we should say that it

is obviously true that mathematics is crucial in language de-

sign, but in many disciplines (e.g., physics) mathematics is

coupled with rigorous empirical data and observations.

3.2.2 Conduct Outreach Work to Disseminate

Verifiable Claims about Language Design

“Help will always be given at Hogwarts to those who ask for it.”

– J.K. Rowling, Harry Potter and the Chamber of Secrets

Even if scientists work diligently on the language wars for

decades in a scholarly setting, actually making an impact in

practice seems unlikely unless we work with existing lan-

guage designers outside the discipline. We think this dissem-

ination work should take two forms with the community: 1)

we need to convince corporate language designers of what

is true and false, and 2) more work needs to be presented

on how language design impacts humans or society in the

broad, given that this is a fundamental principle of program-

ming languages.

On the first point, take as an example our previous dis-

cussion of Boo or Java. On the one hand, new features of

such languages are generally not built on a foundation of

evidence that they are important. On the other, unless the re-

search community, after it has conducted such studies, con-

ducts outreach to teach designers why their features succeed

or fail, and what tangible designs fix the problem, little will

change.

From our perspective, large conference venues could help

by conducting workshops or other outreach work where cor-

porate language designers are welcomed and taught about

language impact. We do not mean, in the strictest sense, that

we should teach how to run experiments, as individual de-

signers like the author of Boo probably have little mecha-

293

nism for running them even if they wanted to. We do mean,

however, that language designers, and students in the class-

room, need to be taught what the best available evidence

shows in regard to language design.

Second, the research community needs far more work

studying the impact of language design. As a consequence,

the research community must make sure that human-centered

methods are heavily applied in publications about program-

ming languages. Presentations at conferences or workshops

should be encouraged to contain elements about human-

centered studies or language impact broadly and this infor-

mation should be shared beyond academia. This is important,

as we imagine some scholars claiming that it is enough if a

new language construct is studied by using human-centered

methods and that it is not necessary to conduct outreach

work. However, in practice, many large corporations own

the language products that are used by the community in

practice—they are financially dependent. If the scholarly

community were to conduct the studies, but not conduct out-

reach, it seems plausible corporate partners will ignore it.

From both previous statements we conclude the following

responsibility of the research community:

Resp.
Teach, communicate, and encourage human-

centered methods in programming language de-

sign to a wide variety of audiences.

3.3 Responsibilities of the Software Industry

Now that we have discussed the responsibilities of individ-

ual language designers or scholars, and the language com-

munity, we feel it is important to note that problems as daunt-

ing as the language wars cannot, and will not, be solved by

academia alone. Users of programming language technolo-

gies, including everyone from working scientists in other

disciplines to video game designers at Electronic Arts, also

have responsibilities in regard to this problem. We discuss

these responsibilities in this section, focusing on the 1) need

for more or better evidence on how languages are used in

industry, and 2) industry’s responsibility to demand better

evidence from language designers.

3.3.1 Tell the World How you Use Your Languages

Probably one of the most crucial responsibilities of the soft-

ware industry is to tell us more exactly what languages are

in common use and how they are used. While it may seem

obvious, garnering a picture of the real problems with the

language wars can only be achieved if we have a greater un-

derstanding of it. Some may believe that we already have

answers to this question, but we argue here that our answers

are weaker than we need.

For example, one of the more common ways of evaluat-

ing the languages used is a resource such as the Tiobe index

(as, for example, being used in [18, 32, 41]). Such an in-

dex is often used as an indicator of how languages play a

role on the market, although there are serious critiques that

we feel should not be overlooked. 5 In other words, we do

not know enough about how languages are used in practice,

which makes it difficult for our community to guide research

priorities to meet the market needs. Without such informa-

tion, scholars are often in the dark, leading us to our first

responsibility:

Resp. Make data regarding language use public.

3.3.2 Demand Evidence

“Don’t pay the ferryman. Don’t even fix a price. Don’t pay the

ferryman until he gets you to the other side.”

- Chris de Burgh, Don’t pay the ferryman

We harbor little doubt that the software industry itself may

not, or cannot, realistically conduct the kind of scholarly ev-

idence gathering that would be required to know the impact

of language design in practice. Mathematical proofs are usu-

ally solved by scholars and randomized controlled trials of-

ten need to be conducted by groups independent from eco-

nomic self-interest. Thus, while the software industry may

not conduct studies on its own, before adopting language

products, we urge the software industry to demand more ev-

idence and to abandon language products/features that are

not living up to reasonable scientific expectations.

As an example, consider the new specification for C++11,

or the up and coming C++14. In this standard, the C++ ISO

committee made a number of changes to a language used

world-wide. Even a quick scan of the C++ 11 wikipedia

page has a section labeled “Core language usability enhance-

ments,” a surprisingly specific claim from writers of the page.

Given that Wikipedia is hardly a perfect source, if we look

instead at the draft specification by ISO, the word “usability”

is used only once, 6 and in its context of usage, they likely

did not mean human usability.

What we find interesting about the changes to C++,

however, is that the ISO committee appears to have made

changes without evidence. It is unclear whether the standard

is better or worse from a human-centric point of view. Con-

sider, for example, the language addition of lambda func-

tions. On the one hand, it might appear that adding this lan-

guage feature is positive, given that other languages have

added this feature recently, perhaps most notably Java JDK

8. However, we find no record of conducting experiments,

have not found any data, and so far as we can tell, find no

record of any evidence gathering at all. We have not pub-

5 see for example http://lambda-diode.com/

programming/the-tiobe-index-is-meaningless,

http://blog.timbunce.org/2009/05/17/

tiobe-index-is-being-gamed/

6 The free working draft can be found at http://www.open-std.

org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf

294

lished data on this language feature, but think it is unclear

whether it has much of an impact in practice. This leads us

to another responsibility for the software industry:

Resp.

Groups like ISO, and companies that support

them, should base their decisions on evidence.

We want to be clear in saying that while we recognize

that such committees often have to rely on expert judgment,

C++ has been established for decades. When it was first de-

signed, it is understandable that Stroustrup was not conduct-

ing randomized controlled trials. Decades later, however, it

is unfortunate that groups as large and important as ISO are

not using scientific evidence. While some of the changes in

the C++ 11 specification “feel” harmless to us (e.g., adding a

hash table to the standard library), others seem confusing or

of questionable value. Ultimately, it’s unfortunate that the ev-

idence standards were not higher for something as obviously

important as changing C++.

Our point though, committees or features aside, is that

industry has a role to play in this process. Groups like Mi-

crosoft or IBM that build C++ compilers should be asking

ISO for evidence and otherwise holding its feet to the fire be-

cause the productivity of its developers depend on good de-

sign. Google showed this quite clearly in their latest article at

ICSE [40], showing evidence that individual compiler errors

were impacting developer productivity in the company. We

argue that the C++14 committee is being pseudo-scientific if

they are not using the scientific method in making the next

version. Running user studies is easy enough to accomplish

that we see few acceptable excuses.

3.4 Responsibilities of Educational Institutions

We think educational institutions also have an important role

to play in the language wars. Academics ultimately decide

which language products the next generation of computer

scientists will learn and should educate students to use ev-

idence when thinking about them. Thus, educators play a

significant role in the language wars and have important re-

sponsibilities. We discuss these here.

3.4.1 Analyze Language Impact with Students

While the computer science education community has a

number of important roles (e.g., engagement, work with

people with disabilities, computing in primary schools, the

impact of gender) studying the impact of programming lan-

guage design is somewhat rare in this community. This is

interesting because, while it’s clear many are interested in

visual tools, in our mini-review of colleges in the mid-west,

we saw few universities actually using visual tools to teach

college students, almost always favoring more general pur-

pose programming languages.

First, even in regard to visual programming languages,

while we know that syntax directed editors [49], or more

modern tools like Alice [6, 36], Scratch [29, 38], or perhaps

end user programming systems [27] have been around for

some time, the evidence for their benefits is not as convinc-

ing as some might think. For example, it is crucial to recog-

nize that visual tools may help novices initially (although not

for the blind), specifically in promoting transfer-of-learning

from visual systems to text-based programming languages.

This has been confirmed independently and using different

methodologies with at least the tool ALVIS [20] and Al-

ice [7]. On the other hand, a study by Garlick and Cankaya

compared using Alice in an introductory course to a control

group that started with pseudo code, finding that the Alice

group had a statistically significant drop in grades [14]; a

very different kind of study with a very different outcome

from the one discussed by Dann et al. [7]. This is inter-

esting, we think, in part because the Garlick and Cankaya

study was the first randomized controlled trial conducted by

a group that was, to our knowledge, independent from the

CMU team.

With a tool like Scratch, there appears to be little rigor-

ous evidence gathering on use of the tool compared to oth-

ers that existed before it. We find this odd given its con-

siderable funding from the National Science Foundation for

promoting engagement activities [4, 13, 29, 38, 51]. While

we make no claims about Scratch either way, we were sur-

prised to learn that most published papers we investigated

contained highly limited evidence gathering, although many,

despite this, contained praise for the tool. On the other hand,

one study looked at 536 Scratch projects, finding students

learned programming concepts using Scratch over time. This

might seem acceptable until we realize that the study did

not have a control group [28]. We remind the reader, as

Kaptchuk describes, that the use of control groups helps rule

out important issues like fraud or more mundane issues like

incorrectness [22]. More crucially, given that students spend

most of their academic career using more general purpose

products than Alice or Scratch, it is unfortunate that so little

research is conducted investigating the products people use

the most in the classroom or in the field.

This leads us to our first responsibility for the educational

community:

Resp.

Conduct competitive analysis of programming

languages with students at all levels of the aca-

demic pipeline.

Second, we need to get a better picture of how program-

ming languages are used in academia internationally. As it

stands now, we know surprisingly little about how language

products are used in practice. Work on engagement has fo-

cused on high school using Alice or Scratch, mostly, but it

is unclear how much these tools are used in college or for

how long. While some schools use them in an introductory

course, we have little data to support what choices are even

being made, let alone the consequences of those choices.

This leads us to a responsibility:

295

Resp. Carefully map out language usage in academia.

From our perspective, we need such a map to understand

the language wars. We think it would provide at least the

following: 1) a more accurate estimate of usage in academia

and K-12 schools, and 2) by identifying schools and universi-

ties that use particular language products, we can then work

together to conduct controlled trials on programming lan-

guage learnability as best as we can. For example, it would

be good to know whether schools that begin with visual pro-

gramming languages have higher performing students, on

average, than those that do not, by the end of their degree

program. Such studies might help us determine whether the

positive impact documented by Dann et al. [7] or the neg-

ative impact documented by Garlick and Cankaya [14] has

implications beyond the first course in college.

3.4.2 Teach Empirical Methods to Programming

Language Students

The current generation of computer science students in

academia rarely, if ever, is engaged with evidence on lan-

guage impact, with the exception that some universities may

provide a human computer interaction course. While we are

not calling for more HCI, current courses on programming

languages typically follow the approach where students try

many languages to give them a rough overview or intro-

duction to what is out there. Other programming language

courses teach formal characteristics of certain programming

language constructs.

From our perspective, this model of teaching program-

ming languages is unfortunate for a world where the num-

ber of languages and libraries is so daunting. We call for a

re-thinking of our approach to teaching programming lan-

guages to students—one which acknowledges that the im-

pact of language design on people is a fundamental principle

of programming languages.

Specifically, we propose that programming language

courses should be more stringent on teaching what actually

works and should dispel the myth that language does not

matter for productivity. Put another way, scholars teaching

language courses should inform students that static type sys-

tems improve developer productivity under a wide variety of

conditions (e.g., with or without an IDE, without documenta-

tion, with documentation), thread based parallelism systems

lead to more bugs than software transactional memory, and

that syntax can cause an order of magnitude difference in ac-

curacy amongst students, results for which we have already

cited randomized controlled trials as evidence. Authors of

programming language textbooks, then, should try to give

students a well-rounded view of the evidence, so that the

next generation of computer scientists makes language deci-

sions on an increasingly larger evidence base.

Resp.

Teach students about the language wars, provid-

ing evidence based arguments on the debate.

4. Summary and Discussion

“Throughout history, every mystery, ever solved, has turned out to

be ... not magic.”

- Tim Minchin, Storm

This essay is a first attempt to frame the debate about what

is often colloquially termed the programming language wars.

This struggle was natural for the computer science commu-

nity in its inception, when we had no experience, but this

is no longer true. At the beginning of the 21st century, we

already know how to do a great deal in regard to designing

languages and we need to use this as an objective filter of

what already exists. Further, we feel that we are duplicating

effort at too large a scale, which needs to be carefully inves-

tigated and considered.

Perhaps the recent extensions of C++ are a good exemplar

for what we feel has gone wrong. In the case of C++, new

constructs continue to be invented. While few would doubt

that innovation can be positive, these constructs have no ev-

idence foundation. Even in academia, scholars are express-

ing less skepticism than we feel they should toward anec-

dotes and claims, while simultaneously showing too much

skepticism toward experimentation—an ironic truth, given

that techniques like randomized controlled trials are the gold

standard in almost all other scientific disciplines. With that

said, we imagine our email boxes saying, “But yes, this is

how it’s done.” Our argument is that the way it is done makes

no sense. We are scientists, not bricklayers.

The lack of a reliable evidence foundation is at the core of

the language wars and we may have to make changes to our

discipline to fix the problem. This may include alterations

to peer review policies, adjustments to education, and an

increasing unwillingness to accept claims made by language

designers that do not base their design decisions on verifiable

and replicable scientific data. This is important because the

language wars may be part of the most massive duplication

of effort in history. As such, it is poor stewardship if we

continue to ignore the problem in perpetuity.

We imagine a large number of participants in the lan-

guage wars, no matter what we have said in this essay nor

how we have said it, will object using anecdotes or per-

sonal experience. We imagine researchers will tell us they

cannot provide evidence for all their steps or that they find

evidence gathering banal or control groups to be unimpor-

tant. We imagine other scholars will tell us that we should

not worry—empirical evidence is just an unhealthy trend in

language design research and it will go away soon. Given the

history of science, which trends toward increasingly reliable

empirical measurements, we have our doubts.

296

It seems plausible that arguments from the language com-

munity will be similar. Developers of language products that

are not scholars, have no training in study design, nor any

mechanism to conduct experiments, will rightfully say they

have no way to follow our suggestions. Of course, this is

justifiable, but developers that cannot contribute to evidence

gathering should at least educate themselves on what the ev-

idence shows. In other words, if a language designer can-

not gather evidence on syntax, they should follow existing

data. If they have no training in studies on type systems, they

should again collaborate or follow the evidence.

The software industry may also object. Perhaps industry

will argue that they cannot wait for evidence because they

require quick solutions to their problems. Language owners

might tell us that studies will not save money and there-

fore they do not care. Both of these arguments are naive.

What we see in industry currently is that development houses

use a polyglot approach to software development. It is per-

fectly normal for a professional to make a claim like, “We

use PHP on the backend, with a Javascript front end, gen-

erating HTML and CSS3, using SQL for our database and

a JSON intermediate layer.” Further, companies like Mi-

crosoft, Google, IBM, or Oracle seem to have no problem

reinventing their own standard libraries. We have no evi-

dence, but would be hard pressed to believe that this is in-

expensive or that these companies do not care about the cost.

An evidence-based language industry could, if we play the

long-game, make such efforts increasingly less necessary.

We imagine educational institutions will tell us that the re-

quest for evidence is counterproductive and that conducting

research studies in the classroom is too difficult. We also sus-

pect many educational researchers, and rightfully so, imag-

ine that even if they conducted such studies, language design-

ers would probably ignore the evidence anyway (a claim the

authors have heard many times). Further, while we recognize

that in classroom studies can be difficult (see e.g., Enbody

and Punch [10]), the medical sciences have it dramatically

harder than us—if our studies fail, no one dies. Yet, while ob-

viously imperfect for many reasons, other disciplines make

tangible progress over time using empirical data, a fact our

community should not ignore.

Finally, we are all too aware that most of our suggestions

will not be taken seriously by many scholars in our commu-

nity. Many will tell us that they do not need to use evidence

to get tenure and promotion—and they are probably right,

given that such procedures are sometimes based on count-

ing papers instead of reading them. We have even heard, un-

fortunately, some younger scholars make arguments like, “I

am sympathetic that we need to use evidence, but if I do

that, I will not be able to publish my papers, because POPL

will never take it seriously.” That any scholar in our history

has thought such a claim might be true is unfortunate. If

the claim is actually true, it is a travesty. We imagine some

of our suggestions could take years of introspection by the

computer science community, while others may never be ful-

filled. We implore the community, however, to take action.

Potential solutions to the language wars are not magic.

5. Conclusion

“I am and always will be the optimist, the hoper of far-flung hopes,

and the dreamer of improbable dreams.”

- Doctor Who, Eleventh Doctor, Season 6, Episode 6

As we write the concluding portion of this essay, harboring

no misconceived delusions that it will impact the world

in any substantive way, we do add one final responsibility,

which we say with all sincerity and complete seriousness:

Resp.

We need to think more deeply about the pro-

gramming language wars, before we leave a

mess for the next generation to clean up.

The programming language wars is a major social ill

causing serious problems in our discipline. Authors of these

languages, we believe, genuinely want to improve how the

world computes, but our arrogance, ignorance, and unwill-

ingness to compromise on some of the most basic issues of

our day has left our community in significant disarray. We

duplicate effort massively. We reinvent the wheel constantly.

We leave scientists in other disciplines in bewilderment at

our evidence practices and standards. We need to do some-

thing about the programming language wars. The last few

hundred years have seen tremendous innovation, largely due

to empirical observations of nature. For problems like the

language wars, which will not be solved by yet one more

proof or the magic of the free market, we need to join the

scientific community at large, challenging ourselves to not

base our decisions on faith, hope, and love; acting on what

in our view is the elephant in the room.

Acknowledgments

We would like to thank Bruce Horn for his feedback on drafts

of this work, in addition to all anonymous reviewers. The

detailed comments we received were extraordinarily helpful

in revising and improving this essay.

References

[1] A. P. Association. Diagnostic and Statistical Manual of Men-

tal Disorders DSM-V-TR. American Psychiatric Publishing,

Arlington, VA, fifth edition, 2013.

[2] M. Bartsch and R. Harrison. An exploratory study of the effect

of aspect-oriented programming on maintainability. Software

Quality Control, 16(1):23–44, 2008.

[3] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Mak-

ing the future safe for the past: Adding genericity to the java

programming language. In Proceedings of the 1998 ACM

SIGPLAN Conference on Object-Oriented Programming Sys-

tems, Languages & Applications (OOPSLA ’98), Vancouver,

297

British Columbia, Canada, October 18-22, 1998, pages 183–

200. ACM, 1998.

[4] K. Brennan and M. Resnick. Stories from the scratch com-

munity: Connecting with ideas, interests, and people. In Pro-

ceeding of the 44th ACM Technical Symposium on Computer

Science Education, SIGCSE ’13, pages 463–464, New York,

NY, USA, 2013. ACM.

[5] O. Callaú, R. Robbes, É. Tanter, and D. Röthlisberger. How

(and why) developers use the dynamic features of program-

ming languages: the case of smalltalk. Empirical Software

Engineering, 18(6):1156–1194, 2013.

[6] S. Cooper. The design of alice. Trans. Comput. Educ.,

10(4):15:1–15:16, Nov. 2010.

[7] W. Dann, D. Cosgrove, D. Slater, D. Culyba, and S. Cooper.

Mediated transfer: Alice 3 to java. In Proceedings of the 43rd

ACM technical symposium on Computer Science Education,

SIGCSE ’12, pages 141–146, New York, NY, USA, 2012.

ACM.

[8] P. Denny, A. Luxton-Reilly, and E. Tempero. All syntax

errors are not equal. In Proceedings of the 17th ACM annual

conference on Innovation and technology in computer science

education, ITiCSE ’12, pages 75–80, New York, NY, USA,

2012. ACM.

[9] P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx.

Understanding the syntax barrier for novices. In Proceed-

ings of the 16th annual joint conference on Innovation and

technology in computer science education, ITiCSE ’11, pages

208–212, New York, NY, USA, 2011. ACM.

[10] R. J. Enbody and W. F. Punch. Performance of python cs1

students in mid-level non-python cs courses. In Proceedings

of the 41st ACM technical symposium on Computer science

education, SIGCSE ’10, pages 520–523, New York, NY, USA,

2010. ACM.

[11] S. Endrikat and S. Hanenberg. Is aspect-oriented program-

ming a rewarding investment into future code changes? A

socio-technical study on development and maintenance time.

In Proceedings of the 2011 IEEE 19th International Confer-

ence on Program Comprehension, ICPC ’11, pages 51–60,

Kingston, CA, 2011. IEEE Computer Society.

[12] S. Endrikat, S. Hanenberg, R. Robbes, and A. Stefik. How

do api documentation and static typing affect api usability? In

36th International Conference on Software Engineering, ICSE

’14, Hyderabad, India - May 31 - June 07, 2014, pages 632–

642. ACM, 2014.

[13] L. P. Flannery, B. Silverman, E. R. Kazakoff, M. U. Bers,

P. Bontá, and M. Resnick. Designing scratchjr: Support for

early childhood learning through computer programming. In

Proceedings of the 12th International Conference on Interac-

tion Design and Children, IDC ’13, pages 1–10, New York,

NY, USA, 2013. ACM.

[14] R. Garlick and E. C. Cankaya. Using Alice in CS1: A quan-

titative experiment. In Proceedings of the Fifteenth Annual

Conference on Innovation and Technology in Computer Sci-

ence Education, ITiCSE ’10, pages 165–168, New York, NY,

2010. ACM.

[15] J. Gil and K. Lenz. The use of overloading in java programs.

In Proceedings of the 24th European Conference on Object-

oriented Programming, ECOOP’10, pages 529–551, Berlin,

Heidelberg, 2010. Springer-Verlag.

[16] S. Hanenberg. Faith, hope, and love: an essay on software sci-

ence’s neglect of human factors. In Proceedings of the ACM

International Conference on Object Oriented Programming

Systems Languages and Applications, OOPSLA ’10, pages

933–946, New York, NY, 2010. ACM.

[17] S. Hanenberg, S. Kleinschmager, and M. Josupeit-Walter.

Does aspect-oriented programming increase the development

speed for crosscutting code? an empirical study. In Proceed-

ings of Empirical Software Engineering and Measurement

(ESEM) 2009, pages 156–167, 2009.

[18] M. Hills, P. Klint, and J. Vinju. An empirical study of php

feature usage: A static analysis perspective. In Proceedings

of the 2013 International Symposium on Software Testing and

Analysis, ISSTA 2013, pages 325–335, New York, NY, USA,

2013. ACM.

[19] M. Hoppe and S. Hanenberg. Do developers benefit from

generic types?: An empirical comparison of generic and raw

types in java. In Proceedings of the 2013 ACM SIGPLAN

International Conference on Object Oriented Programming

Systems Languages & Applications, OOPSLA ’13, pages 457–

474, New York, NY, USA, 2013. ACM.

[20] C. D. Hundhausen, S. F. Farley, and J. L. Brown. Can direct

manipulation lower the barriers to computer programming and

promote transfer of training?: An experimental study. ACM

Transactions on Computer Human Interaction, 16(3):1–40,

2009.

[21] A. Igarashi, B. C. Pierce, and P. Wadler. Featherwieght java:

A minimal core calculus for java and gj. In Proceedings

of the 1999 ACM SIGPLAN Conference on Object-Oriented

Programming Systems, Languages & Applications (OOPSLA

’99), Denver, Colorado, USA, November 1-5, 1999, pages 132–

146. ACM, 1999.

[22] T. J. Kaptchuk. Intentional ignorance: A history of blind

assessment and placebo controls in medicine. Bulletin of the

History of Medicine, 72(3):389–433, 1998.

[23] C. Kelleher and R. Pausch. Lowering the barriers to pro-

gramming: A taxonomy of programming environments and

languages for novice programmers. ACM Computing Surveys,

37(2):83–137, 2005.

[24] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.

Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented program-

ming. In ECOOP, pages 220–242, 1997.

[25] S. Kleinschmager, S. Hanenberg, R. Robbes, É. Tanter, and

A. Stefik. Do static type systems improve the maintainability

of software systems? an empirical study. In IEEE 20th In-

ternational Conference on Program Comprehension, Passau,

Germany, June 11-13, 2012, ICPC’12, pages 153–162. IEEE

Computer Society, 2012.

[26] A. Ko, T. LaToza, and M. Burnett. A practical guide to con-

trolled experiments of software engineering tools with human

participants. Empirical Software Engineering, pages 1–32,

2013.

298

[27] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett,

M. Erwig, C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers,

M. B. Rosson, G. Rothermel, M. Shaw, and S. Wiedenbeck.

The state of the art in end-user software engineering. ACM

Comput. Surv., 43(3):21:1–21:44, Apr. 2011.

[28] J. Maloney, M. Resnick, N. Rusk, K. A. Peppler, and Y. B.

Kafai. Media designs with scratch: What urban youth can

learn about programming in a computer clubhouse. In Pro-

ceedings of the 8th International Conference on International

Conference for the Learning Sciences - Volume 3, ICLS’08,

pages 81–82. International Society of the Learning Sciences,

2008.

[29] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. East-

mond. The scratch programming language and environment.

Trans. Comput. Educ., 10(4):16:1–16:15, Nov. 2010.

[30] S. Markstrum. Staking claims: a history of programming

language design claims and evidence: A positional work in

progress. In Evaluation and Usability of Programming Lan-

guages and Tools, PLATEAU ’10, pages 7:1–7:5, New York,

NY, USA, 2010. ACM.

[31] C. Mayer, S. Hanenberg, R. Robbes, É. Tanter, and A. Stefik.

An empirical study of the influence of static type systems on

the usability of undocumented software. In Proceedings of the

27th Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, Tucson,

AZ, USA, October 21-25, 2012, OOPSLA’12, pages 683–702.

ACM, 2012.

[32] L. A. Meyerovich and A. S. Rabkin. Empirical analysis of

programming language adoption. SIGPLAN Not., 48(10):1–

18, Oct. 2013.

[33] M. Naftalin and P. Wadler. Java generics and collections -

speed up the Java development process. O’Reilly, 2006.

[34] C. Parnin, C. Bird, and E. R. Murphy-Hill. Java generics

adoption: how new features are introduced, championed, or

ignored. In Proceedings of the 8th International Working

Conference on Mining Software Repositories, MSR 2011 (Co-

located with ICSE), Waikiki, Honolulu, HI, USA, May 21-28,

2011, Proceedings, pages 3–12. IEEE, 2011.

[35] C. Parnin, C. Bird, and E. R. Murphy-Hill. Adoption

and use of java generics. Empirical Software Engineering,

18(6):1047–1089, 2013.

[36] R. Pausch. Alice: A dying man’s passion. In SIGCSE ’08: Pro-

ceedings of the 39th SIGCSE Technical Symposium on Com-

puter Science Education, pages 1–1, New York, NY, 2008.

ACM.

[37] P. Petersen, S. Hanenberg, and R. Robbes. An empirical

comparison of static and dynamic type systems on api usage

in the presence of an ide: Java vs. groovy with eclipse. In

22nd International Conference on Program Comprehension,

ICPC 2014, Hyderabad, India, June 2-3, 2014, pages 212–

222. ACM, 2014.

[38] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk,

E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum, J. Silver,

B. Silverman, and Y. Kafai. Scratch: Programming for all.

Communications of the ACM, 52(11):60–67, 2009.

[39] C. J. Rossbach, O. S. Hofmann, and E. Witchel. Is transac-

tional programming actually easier? SIGPLAN Not., 45(5):47–

[39] C. J. Rossbach, O. S. Hofmann, and E. Witchel. Is transac-

tional programming actually easier? SIGPLAN Not., 45(5):47–

56, Jan. 2010.

[40] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bow-

didge. Programmers’ build errors: A case study (at google).

In Proceedings of the 36th International Conference on Soft-

ware Engineering, ICSE 2014, pages 724–734, New York,

NY, USA, 2014. ACM.

[41] C. Souza and E. Figueiredo. How do programmers use op-

tional typing?: An empirical study. In Proceedings of the

13th International Conference on Modularity, MODULAR-

ITY ’14, pages 109–120, New York, NY, USA, 2014. ACM.

[42] S. Spiza and S. Hanenberg. Type names without static type

checking already improve the usability of apis (as long as

the type names are correct): an empirical study. In 13th

International Conference on Modularity, MODULARITY ’14,

Lugano, Switzerland, April 22-26, 2014, pages 99–108. ACM,

2014.

[43] A. Stefik, S. Hanenberg, M. McKenney, A. A. Andrews, S. K.

Yellanki, and S. Siebert. What is the foundation of evidence

of human factors decisions in language design? an empirical

study on programming language workshops. In Proceedings

of the 2014 IEEE 20th International Conference on Program

Comprehension, ICPC ’14, pages 223–231. IEEE Computer

Society, 2014.

[44] A. Stefik and S. Siebert. An empirical investigation into

programming language syntax. Trans. Comput. Educ.,

13(4):19:1–19:40, Nov. 2013.

[45] F. Steimann. The paradoxical success of aspect-oriented pro-

gramming. In OOPSLA ’06: Proceedings of the 21st annual

ACM SIGPLAN conference on Object-oriented programming

systems, languages, and applications, pages 481–497, New

York, NY, 2006. ACM Press.

[46] M. Steinberg. What is the impact of static type systems

on maintenance tasks? An empirical study of differences in

debugging time using statically and dynamically typed lan-

guages. Master Thesis, Institute for Computer Science and

Business Information Systems, University of Duisburg-Essen,

January, 2011.

[47] M. Steinberg and S. Hanenberg. What is the impact of static

type systems on debugging type errors and semantic errors?

An empirical study of differences in debugging time using

statically and dynamically typed languages. unpublished.

[48] A. Stuchlik and S. Hanenberg. Static vs. dynamic type sys-

tems: An empirical study about the relationship between type

casts and development time. In Proceedings of the 7th sym-

posium on Dynamic languages, DLS ’11, pages 97–106, Port-

land, Oregon, USA, 2011. ACM.

[49] T. Teitelbaum and T. Reps. The cornell program synthesizer:

a syntax-directed programming environment. Commun. ACM,

24(9):563–573, Sept. 1981.

[50] W. Tichy. Should computer scientists experiment more? Com-

puter, 31(5):32–40, 1998.

[51] I. Utting, S. Cooper, M. Kölling, J. Maloney, and M. Resnick.

Alice, greenfoot, and scratch – a discussion. Trans. Comput.

Educ., 10(4):17:1–17:11, Nov. 2010.

299

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20140908135317
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Up
 7.2000
 0.0000

 Both
 5
 AllDoc
 5

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 16
 17
 16
 17

 1

 HistoryList_V1
 qi2base

